精英家教网 > 初中数学 > 题目详情

【题目】如图,某市有一块长为(3a+b) 米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.

(1)试用含a,b的代数式表示绿化的面积是多少平方米?

(2)若a=10,b=8,且每平方米造价为100元求出绿化需要多少费用.

【答案】(1)5a2 +3ab平方米 (2)74000元.

【答题空24-1】5a2 +3ab平方米

【解析】长方形的面积等于:(3a+b)(2a+b),中间部分面积等于:(a+b)(a+b),阴影部分面积等于长方形面积-中间部分面积,化简出结果后,把a、b的值代入计算.

解:(1)根据题意得,(3a+b)(2a+b)-(a+b)2=5a2 +3ab,

∴绿化的面积是5a2 +3ab平方米.

(2)当a=10 ,b=8时,5a2+3ab=5×100+3×10×8=740(平方米),

∴740×100=74000元。总费用为74000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(2016云南省第22题)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.

(1)求y与x的函数解析式(也称关系式)

(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,点G是BC延长线上一点,连结AG,分别交BD、CD于点E、F,连结CE.

(1)求证:∠DAE=∠DCE;

(2)当CE=2EF时,EG与EF的等量关系是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016湖南省岳阳市第24题)如图,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式;

(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和BOC的面积分别为S四边形MAOC和SBOC,记S=S四边形MAOCSBOC,求S最大时点M的坐标及S的最大值;

(3)如图,将抛物线F1沿y轴翻折并复制得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A、B、M,过点M作MEx轴于点E,交直线AC于点D,在x轴上是否存在点P,使得以A、D、P为顶点的三角形与ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016广东省深圳市第23题)如图,抛物线轴交于A、B两点,且B(1 , 0)。

(1)、求抛物线的解析式和点A的坐标;

(2)、如图1,点P是直线上的动点,当直线平分APB时,求点P的坐标;

(3)如图2,已知直线 分别与 交于C、F两点。点Q是直线CF下方的抛物线上的一个动点,过点Q作 轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE。问以QD为腰的等腰QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地连续九天的最高气温统计如下表:

最高气温(℃)

22

23

24

25

天数

1

2

2

4

则这组数据的中位数与众数分别是(  )
A.24,25
B.24.5,25
C.25,24
D.23.5,24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果将抛物线y=x2+2先向左平移1个单位,再向下平移2个单位,那么所得新抛物线的表达式是(
A.y=(x﹣1)2
B.y=(x+1)2
C.y=x2+1
D.y=x2+3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列条件中,不能判断△ABC为直角三角形的是 (   )

A. , , B.

C. ∠A∠B=∠C D. ∠A∠B∠C=345

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=ACAB的垂直平分线交ABM,交ACN

1)若∠ABC=70°,则∠MNA的度数是__

2)连接NB,若AB=8cmNBC的周长是14cm

BC的长;

在直线MN上是否存在P,使由PBC构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案