分析 (1)设抛物线y=ax2+bx+c,把三点坐标代入二次函数解析式求出a,b,c的值,即可确定出二次函数解析式;
(2)因为二次函数与直线有两个交点,根据函数图象的交点个数与它们组成的方程组的解的个数的关系,可以利用根的判别式解答.
解答 解:(1)设抛物线y=ax2+bx+c
∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,-1)、(-2,14)三点,
∴$\left\{\begin{array}{l}{c=0}\\{a+b+c=-1}\\{4a-2b+c=14}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=2}\\{b=-3}\\{c=0}\end{array}\right.$.
则这个二次函数的表达式为y=2x2-3x;
(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,
代入二次函数解析式y=2x2-3x得,2x2-4x-1=0,
△=(-4)2-4×2×(-1)=24>0,
故直线与抛物线有两个不同的交点.
②当直线与抛物线相切时t取得最小值,
把y=x+t代入抛物线y=2x2-3x得,2x2-4x-t=0.
△=(-4)2-4×2×(-t)=0,
即t=-2,
故t的取值范围是-2<t≤1.
点评 此题将用待定系数法求函数解析式、函数图象的交点个数与它们组成的方程组的解的个数的关系以及根的判别式结合起来,综合性较强,有一定的难度.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com