精英家教网 > 初中数学 > 题目详情
如果记y=
x2
1+x2
=f(x)
,并且f(1)表示x=1时y的值,即f(1)=
1
1+1
=
1
2
f(
1
2
)
表示x=
1
2
时y的值,即f(
1
2
)=
1
2
1+(
1
2
)
2
=
1
5
,那么f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(n)+f(
1
n
)
=
 

(结果用含n的代数式表示,n为正整数.)
分析:首先利用分式的加减运算法则求得f(n)+f(
1
n
)的值,然后利用加法的结合律,即可求得f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(n)+f(
1
n
)的值.
解答:解:∵f(n)+f(
1
n
)=
n2
1+n2
+
(
1
n
)
2
1+(
1
n
)
2
=
n2
1+n2
+
1
1+n2
=
1+n2
1+n2
=1,
∴f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(n)+f(
1
n
)=f(1)+[f(2)+f(
1
2
)]+[f(3)+f(
1
3
)]+…+[f(n)+f(
1
n
)]=
1
2
+1+1+…+1=
1
2
+(n-1)=n-
1
2

故答案为:n-
1
2
点评:此题考查了分式的加减运算法则.此题难度适中,解题的关键是发现规律:f(n)+f(
1
n
)=1,然后利用加法的结合律求解即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果记y=
x2
1+x2
=f(x)
,并且表示当x=1时y的值,即f(1)=
12
1+12
=
1
2
f(
1
2
)
表示当x=
1
2
时y的值,即f(
1
2
)=
(
1
2
)
2
1+(
1
2
)
2
=
1
5
,┉那么f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(2009)+f(
1
2009
))
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如果记y=
x2
1+x2
=f(x)
,并且f(1)表示当x=1时,y的值,即f(1)=
12
1+12
=
1
2
,同理f(
1
2
)
表示当x=
1
2
时y的值,即f(
1
2
)=
(
1
2
)
2
1+(
1
2
)
2
=
1
5
,…那么f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(n)+f(
1
n
)
=
 
(结果用含有n的代数式表示,n为正整数)(说明:通常在高中我们表示函数时候,习惯用f(x)表示以自变量x的函数值,如初中我们的函数y=2x-3,我们在高中就将其表示为f(x)=2x-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

如果记y=
x2
1+x2
=f(x),并且f(1)表示当x=1时y的值,即f(1)=
12
1+12
=
1
2
;f(
1
2
)表示当x=
1
2
时y的值,即f(
1
2
)=
(
1
2
)
2
1+(
1
2
)
2
=
1
5
,那么f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(n)+f(
1
n
)=
 
.(结果用含n的代数式表示,n为正整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

如果记y=
x2
1+x2
,并且f(1)表示当x=1时y的值,即 f(1)=
12
1+12
=
1
2
f(
1
2
)
 表示当x=
1
2
时y的值,即f(
1
2
)=
(
1
2
)2
1+(
1
2
)2
=
1
5
;…那么 f(1)+f(2)+f(
1
2
)+f(3)+f(
1
3
)+…+f(n)+f(
1
n
)
=
n-
1
2
n-
1
2
.(结果用含n的代数式表示,n为正整数)

查看答案和解析>>

同步练习册答案