如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.
(1)求菱形ABCD的周长;
(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.
解:(1)在菱形ABCD中,
∵AC⊥BD,AC=80,BD=60,∴。
∴菱形ABCD的周长为200。
(2)过点M作MP⊥AD,垂足为点P.
①当0<t≤40时,如答图1,
∵,
∴MP=AM•sin∠OAD=t。
S=DN•MP=
×t×
t=
t2。
②当40<t≤50时,如答图2,MD=70﹣t,
∵,
∴MP=(70﹣t)。
∴S△DMN=DN•MP=
×t×
(70﹣t)=
t2+28t=
(t﹣35)2+490。
∴S关于t的解析式为。
当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480;
当40<t≤50时,S随t的增大而减小,最大值不超过480。
综上所述,S的最大值为480。
(3)存在2个点P,使得∠DPO=∠DON。
如答图3所示,过点N作NF⊥OD于点F,
则NF=ND•sin∠ODA=30×=24,
DF=ND•cos∠ODA=30×=18。
∴OF=12。∴。
作∠NOD的平分线交NF于点G,过点G作GH⊥ON于点H,
则FG=GH。
∴S△ONF=OF•NF=S△OGF+S△OGN=
OF•FG+
ON•GH=
(OF+ON)•FG。
∴。
∴。
设OD中垂线与OD的交点为K,由对称性可知:∠DPK=∠DPO=
∠DON=∠FOG,
∴。
∴PK=。
根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′。
∴存在两个点P到OD的距离都是
解析试题分析:(1)根据勾股定理及菱形的性质,求出菱形的周长。
(2)在动点M、N运动过程中:①当0<t≤40时,如答图1所示,②当40<t≤50时,如答图2所示.分别求出S的关系式,然后利用二次函数的性质求出最大值。
(3)如答图3所示,在Rt△PKD中,DK长可求出,则只有求出tan∠DPK即可,为此,在△ODM中,作辅助线,构造Rt△OND,作∠NOD平分线OG,则∠GOF=∠DPK。在Rt△OGF中,求出tan∠GOF的值,从而问题解决。
另解:答图4所示,作ON的垂直平分线,交OD的垂直平分线EF于点I,连接结OI,IN,过点N作NG⊥OD,NH⊥EF,垂足分别为G,H。
当t=30时,DN=OD=30,易知△DNG∽△DAO,
∴,即
。
∴NG=24,DG=18。
∵EF垂直平分OD,∴OE=ED=15,EG=NH=3。
设OI=R,EI=x,则
在Rt△OEI中,有R2=152+x2 ①
在Rt△NIH中,有R2=32+(24﹣x)2 ②
由①、②可得:。
∴PE=PI+IE=。
根据对称性可得,在BD下方还存在一个点P′也满足条件。
∴存在两个点P,到OD的距离都是。
科目:初中数学 来源: 题型:解答题
为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式.
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年四川绵阳12分)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,﹣2),交x轴于A、B两点,其中A(﹣1,0),直线l:x=m(m>1)与x轴交于D.
(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(2013年四川广安10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD.
(1)求该抛物线的解析式;
(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,若经过点P的直线PE与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线y=﹣x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.
(1)求点A、B、C的坐标和直线BC的解析式;
(2)求△ODE面积的最大值及相应的点E的坐标;
(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?若存在,请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,
),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→ C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).
(1)求经过A、B、C三点的抛物线的解析式;
(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;
(3)以O、P、Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值,若不能,请说明理由;
(4)经过A、B、C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围),若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com