精英家教网 > 初中数学 > 题目详情

【题目】为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:
(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;
(2)到第几个月时,该工厂月利润才能再次达到100万元?
(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月?

【答案】
(1)解:由题意得,设前5个月中y与x的还是关系式为y= ,把x=1,y=3代入得,k=100,

∴y与x之间的函数关系式为y=

把x=5代入得y= =20,

由题意设5月份以后y与x的函数关系式为y=10x+b,

把x=5,y=20代入得,20=10×5+b,

∴b=﹣30,

∴y与x之间的函数关系式为y=10x﹣30


(2)解:由题意得,把y=100代入y=10x﹣30得100=10x﹣30,解得:x=13,

∴到第13个月时,该工厂月利润才能再次达到100万元


(3)解:对于y= ,y=50时,x=2,

∵k=100>0,y随x的增大而减小,∴x<2时,y<50,对于y=10x﹣30,当y=50时,x=8,

∵k=10>0,y随x的增大而增大,∴x<8时,y<50,∴2<x<8时,月利润少于50万元,∴该工厂资金紧张期共有5个月


【解析】(1)根据题意列方程即可得到函数解析式;(2)把y=100代入y=10x﹣30即可得到结论;(3)对于y= ,y=50时,得到x=2,得到x<2时,y<50,对于y=10x﹣30,当y=50时,得到x=8,于是得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在 ABC中,AD平分 BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧做弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是( ).

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC⊥BC,AD⊥BD,E为AB的中点,

(1)如图1,求证:ECD是等腰三角形;

(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示在ABC中,∠C=90°,AC=BC,AD平分∠CABBCD,DEBAE,AB=6厘米,则DEB的周长是_____厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E是CD的中点,AE是延长线交BC的延长线于F,分别连接AC,DF,解答下列问题:
(1)求证:△ADE≌△FCE;
(2)若DC平分∠ADF,试确定四边形ACFD是什么特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与双曲线交于两点,且点的横坐标为

1)求的值;

2)若双曲线上一点的纵坐标为8,求的面积;

3)过原点的另一条直线交双曲线两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是(  )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,抛物线y= x2+2x与x轴相交于O、B,顶点为A,连接OA.

(1)求点A的坐标和∠AOB的度数;
(2)若将抛物线y= x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;
(3)在(2)的情况下,判断点C′是否在抛物线y= x2+2x上,请说明理由.
(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由. (参考公式:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标为( ),对称轴是直线x= .)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两块直角三角尺的60°角和90°角的顶点A叠放在一起.将三角尺ADE绕点A旋转,旋转过程中三角尺ADE的边AD始终在∠BAC的内部在旋转过程中,探索:

(1)∠BAE与∠CAD的度数有何数量关系,并说明理由;

(2)试说明∠CAE﹣∠BAD=30°;

(3)作∠BAD和∠CAE的平分线AM、AN,在旋转过程中∠MAN的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化范围.

查看答案和解析>>

同步练习册答案