精英家教网 > 初中数学 > 题目详情
7、如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=(  )
分析:延长EF交DC的延长线于H点.证明△BEF≌△CHF,得EF=FH.在Rt△PEH中,利用直角三角形斜边上的中线等于斜边的一半,得∠FPC=∠FHP=∠BEF.在等腰△BEF中易求∠BEF的度数.
解答:解:延长EF交DC的延长线于H点.
∵在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,
∴∠B=80°,BE=BF.
∴∠BEF=(180°-80°)÷2=50°.
∵AB∥DC,∴∠FHC=∠BEF=50°.
又∵BF=FC,∠B=∠FCH,
∴△BEF≌△CHF.
∴EF=FH.
∵EP⊥DC,
∴∠EPH=90°.
∴FP=FH,则∠FPC=∠FHP=∠BEF=50°.
故选C.
点评:此题考查了菱形的性质、全等三角形的判定方法、直角三角形斜边上的中线等于斜边的一半等知识点,综合性较强.如何作出辅助线是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案