精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4,点P是斜边AB上一个动点,点D是CP的中点,延长BD至E,使DE=BD,连接AE.
(1)求四边形PCEA的面积;
(2)当AP的长为何值时,四边形PCEA是平行四边形;
(3)当AP的长为何值时,四边形PCEA是直角梯形.

【答案】分析:(1)作CH⊥AB,垂足为H,即可证明四边形PBCE是平行四边形.根据四边形PCEA的面积=(CE+AP)•CH=AB•CH即可求解.
(2)根据点D是CP的中点,DE=BD,即可证明△ECD≌△BPD,即可证明EC∥AP,因而当AP=EC时,得?PCEA,即可求解;
(3)当P、H重合是四边形是直角梯形,据此即可求解.
解答:解:作CH⊥AB,垂足为H,
∵∠ACB=90°,∠BAC=30°,AB=4,
∴BC=2,
则CH=
连接EP,因为CD=DP,BD=DE,得?PBCE.则CE=PB,EP=CB=2.
(1)
四边形PCEA的面积=(CE+AP)•CH=AB•CH=2

(2)当AP=2时,BP=EC=AP,则AP=EC,且AP∥EC,
得?PCEA,∵AP=2=PC=EC,且EC∥AP;

(3)当AP=3时,P、H重合,EC∥AP,∠CPA=90°,
AP=3≠1=PB=EC,得直角梯形PCEA;
当AP=1时,△APE是直角三角形,∠EAP=90°,
EC∥AP,AP=1≠3=PB=EC,得直角梯形PCEA.
点评:本题主要考查了平行四边形的判定,以及直角梯形的判定,正确理解四边形是直角梯形与平行四边形的条件是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案