精英家教网 > 初中数学 > 题目详情

已知方程x2-2x-m=0没有实数根,其中m是实数,试判定方程x2+2mx+m(m+1)=0有无实数根.

解:∵方程x2-2x-m=0没有实数根,
∴△1=22-4(-m)<0,
解得m<-1.
对于方程x2+2mx+m(m+1)=0,
2=4m2-4m(m+1)=-4m,
∵m<-1,
∴△2<0,即方程x2+2mx+m(m+1)=0无实数根.
所以方程x2+2mx+m(m+1)=0无实数根.
分析:先由方程x2-2x-m=0没有实数根,得到△<0,求得m的范围,然后去计算方程x2+2mx+m(m+1)=0的△,由计算结果进行判断即可.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了不等式的解法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知方程x2+2x-3k=0的两个根分别是x1和x2,且满足(x1+1)(x2+1)=-4,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2-2x-5=0,有下列判断:①x1+x2=-2;②x1•x2=-5;③方程有实数根;④方程没有实数根;则下列选项正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2+2x+c=0的两实根为x1、x2,且满足x12+x22=c2-2c,求c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2-2x+b=0的一个实数根为1+
2
,则b=
-1
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2000•宁波)已知方程x2+2x-3k=0的两个根分别是x1和x2,且满足(x1+1)(x2+1)=-4,则k的值为
1
1

查看答案和解析>>

同步练习册答案