精英家教网 > 初中数学 > 题目详情
已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线上,点N在直线y=x+3上,设则抛物线y=﹣abx2+(a+b)x的顶点坐标是             .
( ,  )

试题分析:根据点的对称性可求出ab和a+b的值,从而得出抛物线的解析式,再利用公式法可求其顶点坐标.
解:∵M、N关于y轴对称的点
∴纵坐标相同,横坐标互为相反数
∴点M坐标为(a,b),点N坐标为(-a,b),
∴b=,ab=;b=-a+3,a+b=3,则抛物线y=-abx2+(a+b)x=-x2+3x的横坐标是x=3;纵坐标是
顶点坐标为(3,
点评:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律数
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线交x轴负半轴于点A,交y轴正半轴于点B(0,3),顶点C位于第二象限,连结AB,AC,BC.
(1)求抛物线的解析式;
(2)点D是y轴正半轴上一点,且在B点上方,若∠DCB=∠CAB,请你猜想并证明CD与AC的位置关系;
(3)设与△AOB重合的△EFG从△AOB的位置出发,沿x轴负方向平移t个单位长度(0<t≤3)时,△EFG与△ABC重叠部分的面积为S,求S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)将抛物线c1y=沿x轴翻折,得到抛物线c2,如图所示.

(1)请直接写出抛物线c2的表达式;
(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为AB;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴的交点从左到右依次为DE.
①用含m的代数式表示点A和点E的坐标;
②在平移过程中,是否存在以点AME为顶点的三角形是直角三角形的情形?若存在,请求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为直线x=1,给出五个结论:
①bc>0;②a+b+c<0;
③方程ax2+bx+c=0的根为x1= -1,x2=3;
④当x<1时,y随着x的增大而增大;
⑤4a-2b+c>0
其中正确结论是(  )
A.①②③B.①③④C.②③④D.③④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线的部分图象如图所示,若,则的取值范围是(   )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象与轴交于点,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是   个。 (     )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数,当自变量取两个不同的值时函数值相等,则当自变量时函数值与(         )
A.时的函数值相等  B.时的函数值相等
C.时的函数值相等 D.时的函数值相等

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知二次函数与一次函数的图象相交于两点,则关于的不等式的解集是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线.
(1)求证:不论a取何值时,抛物线与x轴都有两个不同的交点.
(2)设这个二次函数的图象与轴相交于A(,0),B(,0),且的平方和为3,求a的值.

查看答案和解析>>

同步练习册答案