精英家教网 > 初中数学 > 题目详情
如图,已知BC是⊙O的直径,P是⊙O上一点,A是
BP
的中点,AD⊥BC于点D,BP与AD相交于点E.
(1)当BC=6且∠ABC=60°时,求
AB
的长;
(2)求证:AE=BE.
(3)过A点作AMBP,求证:AM是⊙O的切线.
(本题满分6分)
(1)连接OA,AB,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵∠ABC=60°,
∵∠ACB=30°,
∴∠AOB=60°,
又∵OB=
1
2
BC=
1
2
×6=3,
∴AB弧的长为:l=
2πR
6
=
2×π×3
6
=π;

(2)证明:∵点A是
BP
的中点,
BA
=
AP

∴∠C=∠ABP.
∵BC为⊙O的直径,
∴∠BAC=90°,
即∠BAD+∠CAD=90°.
又∵AD⊥BC,
∴∠ADC=90°,
∴∠BAD=∠C,
∴∠ABP=∠BAD,
∴AE=BE;

(3)证明:∵A是
BP
的中点,
∴AO⊥BP,
∵AMBP,
∴AM⊥AO,
即AM是⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,以点A(3,0)为圆心的圆与x轴交于原点O和点B,直线l与x轴、y轴分别交于点C(-2,0)、D(0,3).
(1)求出直线l的解析式;
(2)若直线l绕点C顺时针旋转,设旋转后的直线与y轴交于点E(0,b),且0<b<3,在旋转的过程中,直线CE与⊙A有几种位置关系?试求出每种位置关系时,b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知∠ABC=30°,以O为圆心、2cm为半径作⊙O,使圆心O在BC边上移动,则当OB=______cm时,⊙O与AB相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在半径为1的⊙O中,AB为直径,C为弧AB的中点,D为弧CB的三等分点,且弧DB的长等于弧CD长的两倍,连接AD并延长交⊙O的切线CE于点E(C为切点),则AE的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CGAD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.
(1)试问:CG是⊙O的切线吗?说明理由;
(2)请证明:E是OB的中点;
(3)若AB=8,求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D、E.
(1)求AC、BC的长;
(2)若AC=3,连接BD,求图中阴影部分的面积(π取3.14).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,AB是⊙O的直径,直线l交⊙O于C1、C2,AD⊥l,垂足为D.
(1)求证:AC1•AC2=AB•AD.
(2)若将直线l向上平移(如图2),交⊙O于C1、C2,使弦C1C2与直径AB相交(交点不与A、B重合),其他条件不变,请你猜想,AC1、AC2、AB、AD之间的关系,并说明理由.
(3)若将直线l平移到与⊙O相切时,切点为C,其他条件不变,请你在图3上画出变化后的图形,标好相应的字母并猜想AC、AB、AD的关系是什么?(只写出关系,不加以说明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:水平地面上有一个球,现用如下方法测量球的表面积(球的表面积公式S=4πR2),用锐角∠BAC=60°的直角三角板的斜边紧靠球面,P为切点,一条直角边AC紧靠地面,并使三角板与地面垂直,如果测得PA=1m,则球的表面积等于______.

查看答案和解析>>

同步练习册答案