A. | 7 | B. | 8 | C. | 7$\sqrt{2}$ | D. | 7$\sqrt{3}$ |
分析 由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.
解答 解:如图所示:
∵四边形ABCD是正方形,
∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,
∴∠BAE+∠DAG=90°,
在△ABE和△CDF中,
$\left\{\begin{array}{l}{AB=CD}&{\;}\\{AE=CF}&{\;}\\{BE=DF}&{\;}\end{array}\right.$,
∴△ABE≌△CDF(SSS),
∴∠ABE=∠CDF,
∵∠AEB=∠CFD=90°,
∴∠ABE+∠BAE=90°,
∴∠ABE=∠DAG=∠CDF,
同理:∠ABE=∠DAG=∠CDF=∠BCH,
∴∠DAG+∠ADG=∠CDF+∠ADG=90°,
即∠DGA=90°,
同理:∠CHB=90°,
在△ABE和△ADG中,
$\left\{\begin{array}{l}{∠ABE=∠DAG}&{\;}\\{∠AEB=∠DGA=90°}&{\;}\\{AB=DA}&{\;}\end{array}\right.$,
∴△ABE≌△ADG(AAS),
∴AE=DG,BE=AG,
同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,
∴EG=GF=FH=EF=12-5=7,
∵∠GEH=180°-90°=90°,
∴四边形EGFH是正方形,
∴EF=$\sqrt{2}$EG=7$\sqrt{2}$;
故选:C.
点评 本题考查了正方形的判定与性质、全等三角形的判定与性质;熟练掌握正方形的判定与性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 第504个正方形的左下角 | B. | 第504个正方形的右下角 | ||
C. | 第505个正方形的左上角 | D. | 第505个正方形的右下角 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-1,2) | B. | (-9,18) | C. | (-9,18)或(9,-18) | D. | (-1,2)或(1,-2) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com