分析 由等腰三角形性质知A1A2=A1B1=1,根据B1A1⊥ON、B2A2⊥ON知△OA1B1∽△OA2B2,从而可得$\frac{O{A}_{1}}{O{A}_{2}}$=$\frac{{A}_{1}{B}_{1}}{{A}_{2}{B}_{2}}$,求得A2B2的值,同理再求出A3B3的值,根据规律可得答案.
解答 解:∵△A1B1A2为等腰直角三角形,A1B1=1,
∴A1A2=A1B1=1,
∵B1A1⊥ON,B2A2⊥ON,
∴△OA1B1∽△OA2B2,
∴$\frac{O{A}_{1}}{O{A}_{2}}$=$\frac{{A}_{1}{B}_{1}}{{A}_{2}{B}_{2}}$,即$\frac{3}{3+1}$=$\frac{1}{{A}_{2}{B}_{2}}$,
解得:A2B2=$\frac{4}{3}$,
同理,△OA1B1∽△OA3B3,
∴$\frac{O{A}_{1}}{O{A}_{3}}$=$\frac{{A}_{1}{B}_{1}}{{A}_{3}{B}_{3}}$,即$\frac{3}{3+1+\frac{4}{3}}$=$\frac{1}{{A}_{3}{B}_{3}}$,
解得:A3B3=$\frac{16}{9}$=($\frac{4}{3}$)2,
据此规律可得,AnBn=($\frac{4}{3}$)n-1,
故答案为:($\frac{4}{3}$)n-1.
点评 本题主要考查等腰三角形的性质、相似三角形的判定与性质及数字的变换规律,利用相似三角形的性质求得A1B1、A2B2的值是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com