精英家教网 > 初中数学 > 题目详情
10.下列给出4个命题:
①内错角相等;
②对顶角相等;
③对于任意实数x,代数式x2-6x+10总是正数;
④若三条线段a、b、c满足a+b>c,则三条线段a、b、c一定能组成三角形.
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

分析 利用平行线的性质、对顶角的性质、三角形的三边关系等知识分别判断后即可确定正确的选项.

解答 解:①两直线平行,内错角相等,故错误;
②对顶角相等,正确;
③对于任意实数x,代数式x2-6x+10=(x-3)2+1总是正数,正确;
④若三条线段a、b、c满足a+b>c,则三条线段a、b、c一定能组成三角形,错误,
故选B.

点评 本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、三角形的三边关系等知识,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,在四边形ABCD中,点E在BC上,连接AE,DE,∠BAE=∠EDC=47°,若AE∥CD,∠B=65°,则下列说法中不正确的是(  )
A.∠C=∠AEBB.AB∥DEC.∠DEC=65°D.∠AEB=58°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列命题:(1)如果AC=BC,那么点C是线段AB的中点;(2)不相等的两个角一定不是对顶角;(3)直角三角形的两个锐角互余;(4)同位角相等;(5)两点之间直线最短.其中真命题的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下面等式中,对于任意实数,使各式都有意义的实数a总能成立的个数为(  )
(1)|a-1|=a-1
(2)$\sqrt{a^2}=|a|$
(3)$\sqrt{a}\sqrt{a}=a$
(4)(1-a)2=(a-1)2
A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在Rt△ABC中,∠ABC=90°,AB=BC=$2\sqrt{2}$,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是2$\sqrt{3}$+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC=16.
(1)求C点坐标;
(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.
(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是(  )
A.AD=CBB.∠A=∠CC.BE=DFD.AD∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β
(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;
(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;
(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解方程:$\left\{\begin{array}{l}{4x+y=15}\\{3y-5x=-6}\end{array}\right.$.

查看答案和解析>>

同步练习册答案