精英家教网 > 初中数学 > 题目详情

求证:四个角都相等的四边形是矩形.

答案:略
解析:

先证它是平行四边形(两组对边分别平行)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

29、阅读探究题:数学课上,张老师向大家介绍了等腰三角形的基本知识:有两条边相等的三角形叫等腰三角形,如图1所示:在△ABC中,若AB=AC,则△ABC为等腰三角形且有∠B=∠C.此时,张老师出示了问题:如图2,四边形ABCD是正方形(正方形的四边相等,四个角都是直角),点E是边BC的中点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:在线段AB上取AB的中点M,连接ME,则AM=EC,在此基础上,请聪明的同学们作进一步的研究:
(1)求出角∠AME的度数;
(2)你能在小明的思路下证明结论吗?
(3)小颖提出:如图3,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

我们在小学学过:正方形的四条边都相等,四个角都是直角,并且对边互相平行.将正方形ABCD的四个顶点分别放在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0),如图.
(1)求证:h1=h3
(2)设正方形ABCD的面积为S,小明写出了等式:S=(h3+h22+h12,请你判断是否正确,并说明理由;
(3)若
32
h1+h2=1,当h1变化时,正方形ABCD的面积S随h1的变化而变化.试求出S与h1之间的函数关系式,并写出自变量h1的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把长方形ABCD沿AC折叠,AD落在AD′处,AD′交BC于点E,已知AB=2cm,BC=4cm.(长方形的对边相等,四个角都为直角)
(1)求证:AE=EC;   
(2)求EC的长;      
(3)求重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)

(1)如图1,点G是BC边上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.
求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系
EF=AF-BF
EF=AF-BF

(3)①如图2,若点G是CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是
△ABF≌△DAE
△ABF≌△DAE
,线段EF与AF、BF的等量关系是
EF=BF-AF
EF=BF-AF

②如图3,若点G是CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是
EF=AF+BF
EF=AF+BF

(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.

查看答案和解析>>

同步练习册答案