精英家教网 > 初中数学 > 题目详情
在边长为6的正方形中间挖去一个边长为x)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式为      

试题分析:由题意得,原正方形的面积是6×6=36,其中的小正方形面积是x2,所以剩余部分的面积是36- x2,即.
点评:该题较为简单,主要考查学生对实际问题的理解,对于这类题型,要先认真审题,再列出关系式。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.

(1)填空:点C的坐标是     ,b=   ,c=    
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.

(1)求该抛物线的解析式;                                 
(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A、B(A在B的右边)。

(1)求抛物线的解析式;
(2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F。问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数图象y=ax2+(a-3)x+1与x轴只有一个交点则a的值为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图像大致为  【 】

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的部分图象如图所示,若,则x的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系xOy中, Rt△AOB的直角边OA在x轴的正半轴上,点B在第一象限,并且AB=3,OA=6,将△AOB绕点O逆时针旋转90度得到△COD.点P从点C出发(不含点C),沿射线DC方向运动,记过点D,P,B的抛物线的解析式为y=ax2+bx+c(a<0).

(1)直接写出点D的坐标;
(2)在直线CD的上方是否存在一点Q,使得点D,O,P,Q四点构成的四边形是菱形,若存在,求出P与Q的坐标;
(3)当点P运动到∠DOP=45度时,求抛物线的对称轴;
(4)求代数式a+b+c的值的取值范围(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的部分图象如图所示,由图象可知该二次函数的图象的对称轴是直线x       

查看答案和解析>>

同步练习册答案