精英家教网 > 初中数学 > 题目详情
己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC干点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P处线段AF的中点;
(3)若⊙O的半径为5,AF=
76
,求tan∠ABF的值.
分析:(1)根据角平分线的性质可得∠CBD=∠DBA,由圆周角定理可得∠DAC=∠CBD,继而可得出结论;
(2)根据等角的余角相等,得出∠ADE∠ABD,结合(1)可得PA=PD,再由等角的余角相等得出∠PDF=∠PFD,继而得出PD=PF,然后可得结论;
(3)证明△FDA∽△ADB,利用对应边成比例,可得tan∠DAF,再由∠DAF=∠ABF,可得出答案.
解答:解:(1)∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA.

(2)∵AB为直径,
∴∠ADB=90°,
又∵DE⊥AB于点E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
又∵∠DFA+∠DAC=∠ADE+∠PDF=90°且∠ADE=∠DAP,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,即P是线段AF的中点.

(3)∵∠DAF=∠DBA,∠ADB=∠FDA=90°,
∴△FDA∽△ADB,
DF
DA
=
AF
AB
=
7
6
10
=
7
60

∴tan∠ABF=tan∠DAF=
DF
DA
=
7
60
点评:本题考查了圆的综合,涉及了圆周角定理、等腰三角形的判定与性质及相似三角形的判定与性质,解答本题的关键是掌握相似三角形的对应边成比例,同弧所对的圆周角相等,注意数形结合思想运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O的半径为5,AF=
152
,求tan∠ABF的值.

查看答案和解析>>

科目:初中数学 来源:2013年四川省宜宾市中考数学模拟试卷(三)(解析版) 题型:解答题

己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O的半径为5,AF=,求tan∠ABF的值.

查看答案和解析>>

科目:初中数学 来源:2012年福建省福州市中考数学模拟试卷(二)(解析版) 题型:解答题

己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O的半径为5,AF=,求tan∠ABF的值.

查看答案和解析>>

科目:初中数学 来源:2012年广东省深圳市中考数学信息卷(六)(解析版) 题型:解答题

己知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)若⊙O的半径为5,AF=,求tan∠ABF的值.

查看答案和解析>>

同步练习册答案