精英家教网 > 初中数学 > 题目详情

已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.
(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;
(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;
(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC和CD的数量关系.


(1)证明:在CD上截取CF=AE,连接EF.
∵△ABC是等边三角形,
∴∠ABC=60°,AB=BC.
∴BF=BE,△BEF为等边三角形.
∴∠EBD=∠EFC=120°.
又∵ED=EC,
∴∠D=∠ECF.
∴△EDB≌△ECF (AAS)
∴CF=BD.
∴AE=BD.
∵CD=BC+BD,BC=AC,
∴AE+AC=CD;

(2)解:在BC的延长线上截取CF=AE,连接EF.
同(1)的证明过程可得AE=BD.
∵CD=BC-BD,BC=AC,
∴AC-AE=CD;

(3)解:AE-AC=CD.
(在BC的延长线上截取CF=AE,连接EF.证明过程类似(2)).
分析:(1)在CD上截取CF=AE,连接EF.运用“AAS”证明△ECF≌△EDB得AE=BD,从而得证;
(2)在BC的延长线上截取CF=AE,连接EF.同理可得AE、AC和CD的数量关系;
(3)同(2)的探究过程可得AE、AC和CD的数量关系.
点评:此题考查全等三角形的判定与性质及等边三角形的性质,运用了类比的数学思想进行探究,有利于培养分散思维习惯和举一反三的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知△ABC是等边三角形,⊙O为它的外接圆,点P是
BC
上任一点.
(1)图中与∠PBC相等的角为
 

(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

三角形外心我们可以理解为:到三角形三个顶点距离相等的点称三角形的外心,由此,我们定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
(1)应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=
12
AB,求∠APB的度数.
(2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知D是等边△ABC外一点,∠BDC=120°,则AD、BD、DC三条线段的数量关系为
AD=BD+DC
AD=BD+DC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知△ABC是等边三角形,⊙O为它的外接圆,点P是数学公式上任一点.
(1)图中与∠PBC相等的角为______;
(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市花都区中考数学二模试卷(解析版) 题型:解答题

(2009•花都区二模)已知△ABC是等边三角形,⊙O为它的外接圆,点P是上任一点.
(1)图中与∠PBC相等的角为______;
(2)试猜想出三条线段PA、PB、PC之间的数量关系,并证明.

查看答案和解析>>

同步练习册答案