精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD为某一住宅区的平面示意图,其周长为800m,为了美化环境,计划在住宅区周围5m内(虚线以内,四边形ABCD之外)作为绿化带,则绿化带的面积为________.

25π+4 000(m2
分析:分析题干可知草坪的面积等于四个矩形的面积和四个扇形的面积之和.而四个扇形的面积刚好为半径为5的一个圆的面积,求出即可.
解答:草坪的面积S=800×5+π×52=25π+4 000m2
故答案为:25π+4 000(m2).
点评:本题主要考查扇形面积的计算,利用草坪的面积等于四个矩形的面积和四个扇形的面积之和得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案