精英家教网 > 初中数学 > 题目详情
将两个全等的直角三角形ABC和DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.
分析:(1)连接BF,证△BCF≌△BEF,推出CF=EF,即DE=AC=AF+CF=AF+EF;
(2)连接BF,证△BCF≌△BEF,推出CF=EF,即DE=AC=AF+CF=AF+EF.
解答:(1)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠C=∠AEF=90°,
∴在△BCF和△BEF中
BF=BF
BC=BE

∴△BCF≌△BEF,
∴CF=EF,
∴AF+EF=AC=DE.

(2)AF+EF=DE,
同(1)得CF=EF,
∵△ABC≌△DBE,
∴AC=DE,
∴AF+FC=AF+EF=AC=DE.
点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的性质是:①全等三角形的对应边相等,对应角相等,②全等三角形的判定定理有SAS,ASA,AAS,SSS.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.
精英家教网
小明在对这两张三角形纸片进行如下操作时遇到了两个问题,请你帮助解决.
(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段FG的长度;
(2)将图3中的△ABF沿直线AF翻折到图5的位置,AB1交DE于点H,请证明:AH=DH.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.

小明在对这两张三角形纸片进行如下操作时遇到了两个问题,请你帮助解决。(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段EG的长度;(2)将图3中的△ABF沿直线AF翻折到图5的位置,AB1交DE于点H,请证明:AH=DH.

      

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.

小明在对这两张三角形纸片进行如下操作时遇到了两个问题,请你帮助解决。(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段EG的长度;(2)将图3中的△ABF沿直线AF翻折到图5的位置,AB1交DE于点H,请证明:AH=DH.

查看答案和解析>>

科目:初中数学 来源:2011年广东省汕头市植英中学八年级第一学期期末考试试数学卷 题型:解答题

如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.

小明在对这两张三角形纸片进行如下操作时遇到了两个问题,请你帮助解决。(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段EG的长度;(2)将图3中的△ABF沿直线AF翻折到图5的位置,AB1交DE于点H,请证明:AH=DH.

查看答案和解析>>

科目:初中数学 来源:2011年广东省汕头市八年级第一学期期末考试试数学卷 题型:解答题

如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.

小明在对这两张三角形纸片进行如下操作时遇到了两个问题,请你帮助解决。(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段EG的长度;(2)将图3中的△ABF沿直线AF翻折到图5的位置,AB1交DE于点H,请证明:AH=DH.

      

 

查看答案和解析>>

同步练习册答案