精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中给定以下五个点A(-3,0),B(-1,4),C(0,3),D(
1
2
7
4
),E(1,0).
(1)请从五点中任选三点,求一条以平行于y轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图.
(1)设抛物线的解析式为y=ax2+bx+c,且过点A(-3,0),C(0,3),E(1,0),
由(0,3)在y=ax2+bx+c上.则c=3,再将A、E两点坐标代入,
9a-3b+3=0
a+b+3=0
,解得a=-1,b=-2.
∴抛物线的解析式为y=-x2-2x+3;

(2)由y=-x2-2x+3=-(x+1)2+4,得
顶点坐标为(-1,4),对称轴为x=-1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在直角坐标系xOy中,二次函数y=
1
2
x2+
3
4
nx+2-m
的图象与x轴交于A、B两点,与y轴交于点C,其中点A在点B的左边,若
∠ACB=90°,
CO
AO
+
BO
CO
=1

(1)求点C的坐标及这个二次函数的解析式.
(2)试设计两种方案:作一条与y轴不重合、与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的四分之一.求所截得的三角形三个顶点的坐标(说明:不要求证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=a(x+6)2-3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.
(1)求这个抛物线的解析式;
(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;
(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A(0,1)、D(4,3),P是以AD为对角线的矩形ABDC内部(不在各边上)的一个动点,点C在y轴上,抛物线y=ax2+bx+1以P为顶点.
(1)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由.
(2)设抛物线y=ax2+bx+1与x轴有交点F、E(F在E的左侧),△EAO与△FAO的面积之差为3,且这条抛物线与线段AD有一个交点的横坐标为
7
2
,这时能确定a、b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.(本题的图形仅供分析参考用)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示是二次函数y=-
1
2
x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是(  )
A.4B.
16
3
C.2πD.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场试销一种成本为每件60元的服装,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;
(3)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.
①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

把一根长100cm的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和最小是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

张伯伯利用现有的一面墙(足够长)和60米长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场(如图),设每个小矩形一边的长为x米,设四个小矩形的总面积为y平方米,
(1)请直接写出y与x的函数关系式(不要求写出自变量的取值范围);
(2)当x为何值时,y有最大值,求出最大值.

查看答案和解析>>

同步练习册答案