精英家教网 > 初中数学 > 题目详情
(2013•工业园区模拟)在一个阳光明媚、清风徐徐的周末,小明和小强一起到郊外放风筝.他们把风筝放飞后,两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.
(1)试通过计算,比较风筝A与风筝B谁离地面更高?
(2)求风筝A与风筝B的水平距离.(结果精确到0.01m,
2
≈1.414,
3
≈1.732)
分析:(1)在直角三角形中,运用三角函数定义求得线段BE和AD的长,比较后即可得到谁飞的更高;
(2)利用已知角的余弦函数求CE,CD.距离=CE-CD.
解答:解;(1)分别过A、B作地面的垂线,垂足分别为D、E.
在Rt△ADC中,∵AC=20,∠ACD=60°,
∴AD=20×sin60°=10
3
≈17.32(m).
在Rt△BEC中,∵BC=24,∠BCE=45°,
∴BE=24×sin45°=12
2
≈16.97(m)
∵17.32>16.97,∴风筝A比风筝B离地面更高.

(2)在Rt△ADC中,
∵AC=20,∠ACD=60°,∴DC=20×cos60°=10(m).
在Rt△BEC中,
∵BC=24,∠BCE=45°,∴EC=BE≈16.97(m)
∴EC-DC≈16.97-10=6.97(m)
即风筝A与风筝B的水平距离约为6.97 m.
点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形,解题的关键是从实际问题中抽象出直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•工业园区二模)某班50名同学积极响应“为雅安地震灾区献爱心捐款活动”,并将所捐款情况统计并制成统计图,根据图中信息,捐款金额的众数和中位数分别是
30,30
30,30
元.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•工业园区二模)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中AB=8cm,量角器O刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应划过的
AE
的长度是
28π
9
28π
9
cm.(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•工业园区二模)设函数y=
3
x
与y=x-2的图象的交点坐标为(a,b),则
1
a
-
1
b
的值为
-
2
3
-
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•工业园区二模)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.当线段AM最短时,重叠部分的面积是
96
25
96
25

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•工业园区二模)如图1,平面直角坐标系xOy中,抛物线y=
1
2
x2+bx+c
与x轴交于A、B两点,点C是AB的中点,CD⊥AB且CD=AB.直线BE与y轴平行,点F是射线BE上的一个动点,连接AD、AF、DF.
(1)若点F的坐标为(
9
2
,1),AF=
17

①求此抛物线的解析式;
②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点A、F、P、Q为顶点构成的四边形是平行四边形,请直接写出点Q的坐标;
(2)若2b+c=-2,b=-2-t,且AB的长为kt,其中t>0.如图2,当∠DAF=45°时,求k的值和∠DFA的正切值.

查看答案和解析>>

同步练习册答案