精英家教网 > 初中数学 > 题目详情

【题目】如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求AE的长.

【答案】
(1)证明:

连接OE、EC,

∵AC是⊙O的直径,

∴∠AEC=∠BEC=90°,

∵D为BC的中点,

∴ED=DC=BD,

∴∠1=∠2,

∵OE=OC,

∴∠3=∠4,

∴∠1+∠3=∠2+∠4,

即∠OED=∠ACB,

∵∠ACB=90°,

∴∠OED=90°,

∴DE是⊙O的切线


(2)解:由(1)知:∠BEC=90°,

∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,

∴△BEC∽△BCA,

=

∴BC2=BEBA,

∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,

∵BC=6,

∴62=2x3x,

解得:x=

即AE=


【解析】(1)求出∠OED=∠BCA=90°,根据切线的判定得出即可;(2)求出△BEC∽△BCA,得出比例式,代入求出即可.
【考点精析】根据题目的已知条件,利用相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=6,DAC中点,过点AAE∥BC,连结BE,∠EBD=∠CBD,BD=5,则BE的长为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.

(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;

(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);

(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为(
A.121
B.362
C.364
D.729

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,OAC的中点,过点O的直线分别与ABCD交于点EF,连接BFAC于点M,连接DEBO.若∠COB60°FOFC,则下列结论:①FBOCOMCM②△EOB≌△CMB③四边形EBFD是菱形;④MBOE32.其中正确结论的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.

(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,B=90°,AB=8cm,BC=6cm,点P从点A开始沿ABC的边做逆时针运动,且速度为每秒1cm;点Q从点B开始沿ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间为t秒.

(1)出发2秒后,P,Q两点间的距离为多少cm?

(2)在运动过程中,PQB能形成等腰三角形吗?若能,请求出几秒后第一次形成等腰三角形;若不能,则说明理由.

(3)出发几秒后,线段PQ第一次把ABC的周长分成相等两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1 , y1),B(x2 , y2),AB中点P的坐标为(xp , yp).由xp﹣x1=x2﹣xp , 得xp= ,同理yp= ,所以AB的中点坐标为( ).由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A、B两点间的距离公式为AB= .这两公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:

(1)已知M(1,﹣2),N(﹣1,2),直接利用公式填空:MN中点坐标为 , MN=
(2)如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.

(a)求A、B两点的坐标及C点的坐标;
(b)连结AB、AC,求证△ABC为直角三角形;
(c)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.

查看答案和解析>>

同步练习册答案