科目:初中数学 来源: 题型:
如图,在第一象限内作射线OC,与x轴的夹角为30o,在射线OC上取一点A,过点A作AH⊥x 轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
函数与函数具有某种关系,因此已知函数的图像,可以通过图形变换得到的图像,给出下列变换①平移②旋转③轴对称④相似(相似比不为1),则可行的是( )
A.①③ B.②③ C.①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q。
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断⊿BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,点A,B,C,P的坐标分别为(0,2),(3,2),(2,3),(1,1).
(1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P成中心对称;
(2)若一个二次函数的图像经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com