精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD中,F为DC的中点,E为BC上一点,且CE=
14
BC.你能说出∠AFE是多少吗?并说明理由.
分析:连接AE,根据已知条件,运用勾股定理可以分别求出△AEF的三边,根据勾股定理的逆定理即可求解.
解答:解:∠AFE=90°.
证明:连接AE,设正方形的边长是4a,
由勾股定理得
AF2=(4a)2+(2a)2=20a2,EF2=(2a)2+a2=5a2,AE2=(4a)2+(3a)2=25a2
∵AF2+EF2=AE2
∴△AFE是直角三角形,
∴∠AFE=90°.
点评:本题综合运用勾股定理及其逆定理,此题难度一般,解答本题的关键是掌握勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案