精英家教网 > 初中数学 > 题目详情
精英家教网如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,求折叠△AED的面积.
分析:根据三角形的面积求得BF的长,再根据勾股定理求得AF的长,即为AD的长;设DE=x,则EC=5-x,EF=x.根据勾股定理列方程求得x的值,进而求得△AED的面积.
解答:解:由折叠的对称性,得AD=AF,DE=EF.
由S△ABF=
1
2
BF•AB=30,AB=5,
得BF=12.
在Rt△ABF中,由勾股定理,得
AF=
AB2+BF2
=13

所以AD=13.
设DE=x,则EC=5-x,EF=x,FC=1,
在Rt△ECF中,EC2+FC2=EF2
即(5-x)2+12=x2
解得x=
13
5

S△ADE=
1
2
AD•DE=
1
2
×13×
13
5
=16.9(cm2)
点评:此题主要是能够根据轴对称的性质得到相等的线段,能够熟练根据勾股定理列方程求得未知的线段.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在长方形ABCD(对边相等,四角都是直角)中,将△ABC沿AC对折至△AEC位置,CE与AD交精英家教网于点F.
(1)求证:△AFC是等腰三角形;
(2)若∠ACB=30°,BC=12cm,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上.
(1)若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C有
7
7
个.
(2)选取其中一个C点连△ABC,作出△ABC关于直线L对称的图形.

查看答案和解析>>

科目:初中数学 来源:2015届江苏省苏州市八年级上学期期中模拟数学试卷(解析版) 题型:解答题

(8分)如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.

(1)试说明:AF=FC;

(2)如果AB=3,BC=4,求AF的长.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北师大版九年级(上)期末数学复习水平测试卷(解析版) 题型:解答题

如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.

查看答案和解析>>

同步练习册答案