精英家教网 > 初中数学 > 题目详情
3.a、b为实数,且ab=1,设P=$\frac{a}{a+1}$+$\frac{b}{b+1}$,Q=$\frac{1}{a+1}$+$\frac{1}{b+1}$,则P与Q的大小关系(  )
A.P=QB.P<QC.P>QD.无法确定

分析 分别通分化成同分母的分式相加,再根据同分母分式相加的法则进行计算,最后比较即可.

解答 解:∵ab=1,
∴P=$\frac{1}{a+1}$+$\frac{1}{b+1}$
=$\frac{b+1+a+1}{(a+1)(b+1)}$=$\frac{a+b+2}{ab+a+b+1}$=1,
∴Q=$\frac{a}{a+1}$+$\frac{b}{b+1}$
=$\frac{a(b+1)+b(a+1)}{(a+1)(b+1)}$=$\frac{2ab+a+b}{ab+a+b+1}$=1,
∴P=Q,
故选A.

点评 本题考查了分式的加减法则的运用,主要考查学生的计算能力,题目比较好,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.已知$\sqrt{2\sqrt{3}-3}$=$\sqrt{\sqrt{3}x}$-$\sqrt{\sqrt{3}y}$(x,y为有理数),则x-y=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.(20an-2bn-14an-1bn+1+8a2nb)÷(-2an-3b)=-10abn-1+7a2bn-4an+3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:BM=CN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论BM=CN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,AB=6,AC=4,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究BM与CN的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知一次函数y=kx+b和y=x+a的图象交于点A,则关于x,y的二元一次方程组$\left\{\begin{array}{l}{kx-y=-b}\\{x-y=-a}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$B.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$C.$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.阅读与应用.
操作示例
对于边长为a的两个正方形ABCD和EFGH,按图(1)所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图(1)中的四边形BNED.从拼接的过程容易得到结论:①四边形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
实践与探究
对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图(2)所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N.
①证明四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;
②在图(2)中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图(1),用数字表示对应的图形).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图①,在Rt△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点D从点B出发,以1cm/s的速度沿BC向点C运动(不与点B,C重合),过点D作DE⊥BC交AB于点E,将△BDE沿直线DE翻折,点B落在射线BC上的点F处,N为AB的中点,过点N分别作NM⊥BC于点M,NQ⊥AC于点Q,设点D的运动时间为t(s).
(1)直线用含t的代数式表示线段FC的长;
(2)当EF经过点Q时,求t的值;
(3)设△DEF与矩形CMNQ重叠部分的面积为S(S>0),求S与t的函数关系式;
(4)当点D开始运动时,点P从点A出发(如图②),以2m/s的速度沿A-C-B的方向运动,当点P与点F重合时,点P与点D同时停止运动,连接NP,将△ANP沿直线NP翻折得到△NPA′,当NA′与△DEF的一边平行时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图在△ABC中,AB=AC,∠A=120°,BC=9cm,AB的垂直平分线交BC于点M,交AB于点N,AC的垂直平分线交BC于点E,交AC于点F,则ME的长是(  )
A.2cmB.3cmC.4cmD.5cm

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.二次根式$\sqrt{x+1}$有意义的条件是x≥-1.

查看答案和解析>>

同步练习册答案