精英家教网 > 初中数学 > 题目详情
17.如图,已知点E,F分别是?ABCD的边BC,AD上的中点,且∠BAC=90°.
(1)求证:四边形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面积.

分析 (1)由平行四边形的性质得出AD=BC,由直角三角形斜边上的中线性质得出AE=$\frac{1}{2}$BC=CE,AF=$\frac{1}{2}$AD=CF,得出AE=CE=AF=CF,即可得出结论;
(2)连接EF交AC于点O,解直角三角形求出AC、AB,由三角形中位线定理求出OE,得出EF,菱形AECF的面积=$\frac{1}{2}$AC•EF,即可得出结果.

解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,
在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
∴AE=$\frac{1}{2}$BC=CE,
同理,AF=$\frac{1}{2}$AD=CF,
∴AE=CE=AF=CF,
∴四边形AECF是菱形;
(2)解:连接EF交AC于点O,如图所示:
在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,
∴AC=$\frac{1}{2}$BC=5,AB=$\sqrt{3}$AC=5$\sqrt{3}$,
∵四边形AECF是菱形,
∴AC⊥EF,OA=OC,
∴OE是△ABC的中位线,
∴OE=$\frac{1}{2}$AB=$\frac{5\sqrt{3}}{2}$,
∴EF=5$\sqrt{3}$,
∴菱形AECF的面积=$\frac{1}{2}$AC•EF=$\frac{1}{2}$×5×5$\sqrt{3}$=$\frac{25\sqrt{3}}{2}$.

点评 本题考查了平行四边形的性质、菱形的判定与性质、直角三角形斜边上的中线性质、三角形中位线定理、菱形的面积公式;熟练掌握菱形的判定与性质,并能进行推理论证与计算是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图1,将等腰直角△ABC放在直角坐标系中,其中∠B=90°,A(0,10),B(8,4),动点P在直角边上,沿着A-B-C匀速运动,同时点Q在x轴正半轴上以同样的速度运动,当点P到达C时,两点同时停止运动.设运动时间为t秒,当点P在AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,
(1)则Q开始运动时的坐标是(1,0);P点运动的速度是每秒钟1个单位长度.
(2)求AB的长及点C的坐标;
(3)问当t为何值时,OP=PQ?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.抛物线y=a(x-h)2+k向左平移2个单位,再向下平移3个单位得到y=x2+1,则h、k的值是(  )
A.h=-2,k=-2B.h=2,k=4C.h=1,k=4D.h=2,k=-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知O为△ABC的内心,且∠BOC=130°,则∠A=80°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,抛物线y=-$\frac{1}{2}$x2+bx+c过A(0,2),B(1,3),CB⊥x轴于点C,四边形CDEF为正方形,点D在线段BC上,点E在此抛物线上,且在直线BC的左侧,则正方形CDEF的边长为$\frac{-3+\sqrt{33}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(0,4)、(-3,0),点E、F分别为AB、BO的中点,分别连接AF、EO,交点为P,点P的坐标为(  )
A.(-1,$\frac{4}{3}$)B.(-$\frac{3}{2}$,2)C.(-$\frac{3}{2}$,$\frac{4}{3}$)D.(-1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2$\sqrt{3}$;③tan∠DCF=$\frac{3\sqrt{3}}{7}$;④△ABF的面积为$\frac{12}{5}$$\sqrt{3}$.其中一定成立的是①②③(把所有正确结论的序号都填在横线上).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).
(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;
(2)如图2,双曲线y=$\frac{k}{x}$与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.
①试求△PAD的面积的最大值;
②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于16cm.

查看答案和解析>>

同步练习册答案