精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为9,则BE=


  1. A.
    2
  2. B.
    3
  3. C.
    2数学公式
  4. D.
    2数学公式
B
分析:作BF⊥CD交CD的延长线于点F,据条件可证得∠ABE=∠CBF,且由已知∠AEB=∠CFB=90°,AB=BC,所以△ABE≌△CBF,可得BE=BF;四边形ABCD的面积等于新正方形FBED的面积(需证明是正方形),即可得BE=3.
解答:解:过B作BF垂直DC的延长线于点F,∵∠ABC=∠CDA=90°,BF⊥CD,
∴∠ABE+∠EBC=∠CBF+∠EBC,∴∠ABE=∠CBF;
又∵BE⊥AD,BF⊥DF,且AB=BC,
∴△ABE≌△CBF,即BE=BF;
∵BE⊥AD,∠CDA=90°,BE=BF,
∴四边形BEDF为正方形;
由以上得四边形ABCD的面积等于正方形BEDF的面积,即等于9,
∴BE2=9,即BE=3.
故选B.
点评:此题主要考查直角三角形全等的判定,涉及到正方形的面积知识点,作好辅助线是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案