【题目】为了解某中学去年中招体育考试中女生”一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一组到第六组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题
(1)本次抽取的女生总人数为 第六小组人数占总人数的百分比为 请补全频数分布直方图;
(2)题中样本数据的中位数落在第 组内;
(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.
【答案】(1)50,8%,频数分布直方图补充见解析;(2)三;(3)估计该校九年级女生“一分钟跳绳”成绩优秀的人数为224人
【解析】试题分析:
(1)根据两幅统计图中的信息:第二小组有10人,占总数的20%可得被抽查的总数为50人,由此结合条形统计图中的信息可得第六小组占总数的百分比为8%,根据总数50和条形统计图中的已知信息可得第四小组有6人,由此即可补全条形统计图;
(2)由总数为50可知这组数据的中位数是按大小排列后的第25和26两个数的平均数,由条形统计图中的信息可知中位数在第三组;
(3)由题意可知第四、五、六三组属于跳绳优秀的,计算出这三组占总数的百分比与560相乘即可得到所求答案.
试题解析:
(1)由两幅统计图中的信息可得:被抽查总数为:10÷20%=50(人),
∴第六组人数占总数人数的百分比为:4÷50×100%=8%,
第四组的人数为:50-4-10-16-6-4=10,
频数分布直方图补充如下
(2)由(1)可知共抽查了50个女生,第25个和第26个学生成绩都落在第三组,
∴中位数落在第三组,
(3)随机抽取的样本中,不低于130次的有20人,
则总体560人中优秀的有×560=224(人)
答:估计该校九年级女生“一分钟跳绳”成绩优秀的人数为224人
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线交轴于点,交轴正半轴于点,与过点的直线相交于另一点,过点作轴,垂足为.
(1)求抛物线的表达式;
(2)点在线段上(不与点,重合),过作轴,交直线于,交抛物线于点,于点,求的最大值;
(3)若是轴正半轴上的一动点,设的长为.是否存在,使以点为顶点的四边形是平行四边形?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与轴交于点,与轴交于点.
(1)求抛物线的表达式;
(2)点为抛物线的顶点,在轴上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;
(3)如图2,位于轴右侧且垂直于轴的动直线沿轴正方向从运动到(不含点和点),分别与抛物线、直线以及轴交于点,过点作于点,求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与轴交于点,与轴交于点,的平分线交轴于点,点在线段上,以为直径的⊙D经过点.
(1)判断⊙D与轴的位置关系,并说明理由;
(2)求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某建材销售公司在2019年第一季度销售两种品牌的建材共126件,种品牌的建材售价为每件6000元,种品牌的建材售价为每件9000元.
(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售种品牌的建材多少件?
(2)该销售公司决定在2019年第二季度调整价格,将种品牌的建材在上一个季度的基础上下调,种品牌的建材在上一个季度的基础上上涨;同时,与(1)问中最低销售额的销售量相比,种品牌的建材的销售量增加了,种品牌的建材的销售量减少了,结果2019年第二季度的销售额比(1)问中最低销售额增加,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过点A(2,0)和点C,抛物线与x轴交于点A和点E(点A在点E的左侧),连接AC,将△ABC沿AC折叠,得到点B的对应点为点D.
(1)求二次函数的表达式;
(2)求点D坐标,并判定点D是否在该二次函数的图象上;
(3)①在线段AC上找一点F,使得△OBF的周长最小,直接写出此时点F的坐标.②在①的基础上,过点F的一条直线与抛物线对称轴右侧部分交于点N,交线段AD于点M,连接NA、ND,使△AMF与△AMN的面积比为4:1,请直接写出△AND的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,CD平分∠ACB,交AB于点D,以点D为圆心,DA为半径的圆与AB相交于点E,与CD交于点F.
(1)求证:BC是⊙D的切线;
(2)若EF∥BC,且BC=6,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.
(1)请写出与之间的函数表达式;
(2)当为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com