精英家教网 > 初中数学 > 题目详情

【题目】初三(1)班针对垃圾分类知晓情况对全班学生进行专题调查活动,对垃圾分类的知晓情况分为四类.其中,类表示非常了解类表示比较了解类表示基本了解类表示不太了解,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.

垃圾分类知晓情况各类别人数条形统计图垃圾分类知晓情况各类别人数扇形统计图

根据以上信息解决下列问题:

1)初三(1)班参加这次调查的学生有______人,扇形统计图中类别所对应扇形的圆心角度数为______°

2)求出类别的学生数,并补全条形统计图;

3)类别4名学生中有2名男生和2名女生,现从这4名学生中随机选取2名学生参加学校垃圾分类知识竞赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.

【答案】140144;(2)类别的学生数为18,补全图形见解析;(3

【解析】

1)由类人数及其所占百分比可得总人数;再由C类人数所占百分比求出类别所对应扇形的圆心角度数;

2)总人数减去的人数求得类别人数,据此即可补全图形;

3)列表得出所有等可能结果,再根据概率公式求解可得.

解:(1)调查学生总数=(人);

类别所对应扇形的圆心角度数=

故答案为: 40144

2)类别的学生数=40-41640×5%=18人,

补全条形统计图如图.

3)列表如下:

第二次

第一次

1

2

1

2

1

_______

(男2,男1

(女1,男1

(女2,男1

2

(男1,男2

_______

(女1,男2

(女2,男2

1

(男1,女1

(男2,女1

_______

(女2,女1

2

(男1,女2

(男2,女2

(女1,女2

_______

(选取的2名学生中恰好有1名男生、1名女生)=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,为格点,为小正方形边的中点.

1的长等于_________

2)点分别为线段上的动点,当取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段,并简要说明点和点的位置是如何找到的(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A1A2A3B1B2B3分别在直线yx+bx轴上.OA1B1B1A2B2B2A3B3都是等腰直角三角形如果点A111),那么点A2019的纵坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).

(1)求抛物线的函数解析式;

(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;

(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ABAC,以AC为直径的⊙OBC于点D,点EAC延长线上一点,且DE是⊙O的切线.

1)求证:∠CDE BAC

2)若AB3BDCE4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图像与轴交于点左侧),与轴正半轴交于点,点在抛物线上,轴,且

1)求点的坐标及的值;

2)点轴右侧抛物线上一点.

如图,若平分于点,求点的坐标;

如图,抛物线上一点的横坐标为2,直线轴于点,过点作直线的垂线,垂足为,若,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂用天时间生产一款新型节能产品,每天生产的该产品被某网店以每件元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第天的生产成本(元/件)与(天)之间的关系如图所示,第天该产品的生产量(件)与(天)满足关系式

天,该厂生产该产品的利润是   元;

设第天该厂生产该产品的利润为元.

①求之间的函数关系式,并指出第几天的利润最大,最大利润是多少?

②在生产该产品的过程中,当天利润不低于元的共有多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线y=ax2+bx+ca0)的顶点为Ast)(其中s0).

1)若抛物线经过(27)和(-337)两点,且s=1

①求抛物线的解析式;

②若n1,设点Mny1),Nn+1y2)在抛物线上,比较y1y2的大小关系,并说明理由;

2)若a=2c=-2,直线y=2x+m与抛物线y=ax2+bx+c的交于点P和点Q,点P的横坐标为h,点Q的横坐标为h+3,求出bh的函数关系式;

3)若点A在抛物线y=上,且2s3时,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中放有三张卡片,每张卡片上写有1个实数,分别为123.(卡片除了实数不同外,其余均相同)

1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是2的概率_______

2)先从盒子中随机抽取一张卡片,将卡片上的实数作为点P的横坐标,卡片不放回,再随机抽取一张卡片,将卡片上的实数作为点P的纵坐标,两次抽取的卡片上的实数分别作为点P的横纵坐标.请你用列表法或树状图法,求出点P在反比例函数上的概率.

查看答案和解析>>

同步练习册答案