精英家教网 > 初中数学 > 题目详情

【题目】已知反比例函数 的图象经过点 ,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x轴的交点坐标.

【答案】解:由于反比例函数 的图象经过点 , 则
解得k=2,
故反比例函数为
又∵点B(2,m)在 的图象上,

∴B(2,1).
设由y=x+1的图象平移后得到的函数解析式为y=x+b,
由题意知y=x+b的图象经过点B(2,1),
则1=2+b.
解得b=﹣1.
故平移后的一次函数解析式为y=x﹣1.
令y=0,则0=x﹣1.
解得x=1.
故平移后的一次函数图象与x轴的交点坐标为(1,0).
【解析】根据点 ,点B(2,m)都在反比例函数上可得到m的值.根据新函数是由平移得到的可得到新函数k的值,把点B的坐标代入即可求得新函数解析式,进而求得与x轴的交点坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.求:

(1)单摆的长度( ≈1.7);
(2)从点A摆动到点B经过的路径长(π≈3.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,椭圆 的右顶点和上顶点分别为点A,B,M是线段AB的中点,且 ..
(1)求椭圆的离心率;
(2)若a=2,四边形ABCD内接于椭圆,AB∥CD,记直线AD,BC的斜率分别为k1 , k2 , 求证:k1k2为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算或解方程:
(1)( 0|﹣4tan45°+6cos60°﹣|﹣5|
(2)x2﹣3x=5(x﹣3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD的距离为(
A.2cm
B.14cm
C.2cm或14cm
D.10cm或20cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P、Q是反比例函数y= 图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 , △QMN的面积记为S2 , 则S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(
A.“任意画一个三角形,其内角和是360°”是随机事件
B.“明天的降水概率为80%”,意味着明天降雨的可能性较大
C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会中奖
D.晓芳抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.
(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是
(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准碟形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的剧烈为碟高.
(1)抛物线y=x2对应的碟宽为;抛物线y= x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣3)2+2(a>0)对应的碟宽为
(2)利用图(1)中的结论:抛物线y=ax2﹣4ax﹣ (a>0)对应的碟宽为6,求抛物线的解析式.
(3)将抛物线yn=anx2+bnx+cn(an>0)的对应准蝶形记为Fn(n=1,2,3,…),定义F1 , F2 , …..Fn为相似准蝶形,相应的碟宽之比即为相似比.若Fn与Fn1的相似比为 ,且Fn的碟顶是Fn1的碟宽的中点,现在将(2)中求得的抛物线记为y1 , 其对应的准蝶形记为F1
①求抛物线y2的表达式;
②若F1的碟高为h1 , F2的碟高为h2 , …Fn的碟高为hn . 则hn= , Fn的碟宽右端点横坐标为

查看答案和解析>>

同步练习册答案