15£®Ð¡Ã÷ºÍСÁÁ×é³ÉÍŶӲμÓij¿Æѧ±ÈÈü£®¸Ã±ÈÈüµÄ¹æÔòÊÇ£ºÃ¿ÂÖ±ÈÈüÒ»ÃûÑ¡Êֲμӣ¬ÈôµÚÒ»ÂÖ±ÈÈüµÃ·ÖÂú60ÔòÁíÒ»ÃûÑ¡ÊÖ½ú¼¶µÚ¶þÂÖ£¬µÚ¶þÂÖ±ÈÈüµÃ·Ö×î¸ßµÄÑ¡ÊÖËùÔÚÍŶÓÈ¡µÃʤÀû£®ÎªÁËÔÚ±ÈÈüÖÐÈ¡µÃ¸üºÃµÄ³É¼¨£¬Á½ÈËÔÚÈüÇ°·Ö±ð×÷Á˾ŴβâÊÔ£¬ÈçͼΪ¶þÈ˲âÊԳɼ¨ÕÛÏßͳ¼Æͼ£¬ÏÂÁÐ˵·¨ºÏÀíµÄÊÇ£¨¡¡¡¡£©
¢ÙСÁÁ²âÊԳɼ¨µÄƽ¾ùÊý±ÈСÃ÷µÄ¸ß
¢ÚСÁÁ²âÊԳɼ¨±ÈСÃ÷µÄÎȶ¨
¢ÛСÁÁ²âÊԳɼ¨µÄÖÐλÊý±ÈСÃ÷µÄ¸ß
¢ÜСÁÁ²Î¼ÓµÚÒ»ÂÖ±ÈÈü£¬Ð¡Ã÷²Î¼ÓµÚ¶þÂÖ±ÈÈü£¬±È½ÏºÏÀí£®
A£®¢Ù¢ÛB£®¢Ù¢ÜC£®¢Ú¢ÛD£®¢Ú¢Ü

·ÖÎö ½áºÏÕÛÏßͳ¼Æͼ£¬ÀûÓÃÊý¾ÝÖðÒ»·ÖÎö½â´ð¼´¿É£®

½â´ð ½â£º¢ÙÓÉÕÛÏßͳ¼Æͼ֪СÃ÷µÄ³É¼¨ÓÐ5´Î¸ßÓÚСÁÁµÄ³É¼¨£¬ÓÐ1´ÎºÍСÁÁÏàµÈ£¬¹ÊСÃ÷µÄ²âÊԳɼ¨µÄƽ¾ùÊý±ÈСÁÁµÄ¸ß£¬¹Ê¢Ù´íÎó£»
¢ÚÓÉÕÛÏßͳ¼Æͼ֪СÁÁ²âÊԳɼ¨²¨¶¯Ð¡£¬¹ÊСÁÁ²âÊԳɼ¨±ÈСÃ÷µÄÎȶ¨£¬¹Ê¢ÚÕýÈ·£»
¢Û¡ßСÁÁ²âÊԳɼ¨µÄÖÐλÊý´óÔ¼ÊÇ69£¬Ð¡Ã÷²âÊԳɼ¨µÄÖÐλÊý´óÔ¼ÊÇ90£¬¹Ê¢Û´íÎó£»
¢Ü¡ßСÁÁ²âÊԳɼ¨±ÈСÃ÷µÄÎȶ¨£¬Ð¡Ã÷µÄ²âÊԳɼ¨±ÈСÁÁ¸ß£¬
¡àСÁÁ²Î¼ÓµÚÒ»ÂÖ±ÈÈü£¬Ð¡Ã÷²Î¼ÓµÚ¶þÂÖ±ÈÈü£¬±È½ÏºÏÀí£®¹Ê¢ÜÕýÈ·£»
¹ÊÑ¡D£®

µãÆÀ ±¾Ì⿼²éÁËƽ¾ùÊýºÍ·½²îÒÔ¼°¶ÁÕÛÏßͼµÄÄÜÁ¦ºÍÀûÓÃͳ¼Æͼ»ñÈ¡ÐÅÏ¢µÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚ×ö¿ÎÌÃ×÷ҵʱ£¬Ð¡Ã÷²»×¢ÒâÓÃīˮȾÁËÒ»µÀÌâÈçÏ£º¡°ÏÈ»¯¼ò£¬ÔÙÇóÖµ£¨a-2£©£¨a+2£©-a£¨a-2£©£¬ÆäÖÐa=¡ö¡ö£¬Ð¡Ã÷·­¿ª´ð°¸¿´µ½ÕâÌâµÄ½á¹ûÊÇ6£®ÄãÄÜ°ïËûÈ·¶¨³öÀ´±»Ä«Ë®È¾Á˵IJ¿·ÖÄÚÈÝÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬ÒÑÖª¡ÑPÓëxÖá½»ÓÚAºÍB£¨9£¬0£©Á½µã£¬ÓëyÖáµÄÕý°ëÖáÏàÇÐÓëµãC£¨0£¬3£©£¬×÷¡ÑPµÄÖ±¾¶BD£¬¹ýµãD×÷Ö±ÏßDE¡ÍBD£¬½»xÖáÓÚEµã£¬ÈôµãPÔÚË«ÇúÏßy=$\frac{15}{x}$ÉÏ£¬ÔòÖ±ÏßDEµÄ½âÎöʽΪy=$\frac{12}{7}$x+$\frac{30}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{3£¨2x-1£©£¾4x-5¢Ù}\\{\frac{3}{2}x-1¡Ü\frac{1}{2}x¢Ú}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÓÐÎåÕÅÕýÃæ·Ö±ð±êÓÐÊý-2£¬0£¬1£¬3£¬4µÄ²»Í¸Ã÷¿¨Æ¬£¬ËüÃdzýÁËÊý×Ö²»Í¬ÍâÆäÓàÈ«²¿Ïàͬ£®ÏÖ½«ËüÃDZ³Ã泯ÉÏ£¬Ï´ÔȺó´ÓÖÐÈÎÈ¡Ò»ÕÅ£¬½«¿¨Æ¬ÉϵÄÊý¼ÇΪa£¬Ôòʹ¹ØÓÚxµÄ·½³Ì$\frac{1-ax}{x-2}$+2=$\frac{1}{2-x}$ÓÐÕýÕûÊý½âµÄ¸ÅÂÊΪ$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³µ¥Î»ÓÐÖ°¹¤200ÈË£¬ÆäÖÐÇàÄêÖ°¹¤£¨20-35Ë꣩£¬ÖÐÄêÖ°¹¤£¨35-50Ë꣩£¬ÀÏÄêÖ°¹¤£¨50Ëê¼°ÒÔÉÏ£©ËùÕ¼±ÈÀýÈçÉÈÐÎͳ¼ÆͼËùʾ£®
ΪÁ˽â¸Ãµ¥Î»Ö°¹¤µÄ½¡¿µÇé¿ö£¬Ð¡ÕÅ¡¢Ð¡ÍõºÍСÀî¸÷×Ô¶Ôµ¥Î»Ö°¹¤½øÐÐÁ˳éÑùµ÷²é£¬½«ÊÕ¼¯µÄÊý¾Ý½øÐÐÁËÕûÀí£¬»æÖƵÄͳ¼Æ±í·Ö±ðΪ±í1¡¢±í2ºÍ±í3£®
±í1£ºÐ¡ÕųéÑùµ÷²éµ¥Î»3ÃûÖ°¹¤µÄ½¡¿µÖ¸Êý
ÄêÁä264257
½¡¿µÖ¸Êý977972
±í2£ºÐ¡Íõ³éÑùµ÷²éµ¥Î»10ÃûÖ°¹¤µÄ½¡¿µÖ¸Êý
ÄêÁä23252632333739424852
½¡¿µÖ¸Êý93899083797580696860
±í3£ºÐ¡Àî³éÑùµ÷²éµ¥Î»10ÃûÖ°¹¤µÄ½¡¿µÖ¸Êý
ÄêÁä22293136394043465155
½¡¿µÖ¸Êý94908885827872766260
¸ù¾ÝÉÏÊö²ÄÁϻشðÎÊÌ⣺
СÕÅ¡¢Ð¡ÍõºÍСÀîÈýÈËÖУ¬Ë­µÄ³éÑùµ÷²éµÄÊý¾ÝÄܹ»½ÏºÃµØ·´Ó³³ö¸Ãµ¥Î»Ö°¹¤½¡¿µÇé¿ö£¬²¢¼òҪ˵Ã÷ÆäËûÁ½Î»Í¬Ñ§³éÑùµ÷²éµÄ²»×ãÖ®´¦£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©$\sqrt{12}$-3tan30¡ã+£¨4-¦Ð£©0-£¨$\frac{1}{2}$£©-1
£¨2£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨$\frac{3}{x+1}$-x+1£©¡Â$\frac{{x}^{2}+4x+4}{x+1}$£¬ÆäÖÐx=$\sqrt{2}$-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨2a+b£©£¨b-2a£©+4£¨a2-b£©£¬ÆäÖÐa=2£¬b=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬ÔÚÕý·½ÐÎABCDÖУ¬ACΪ¶Ô½ÇÏߣ¬EΪABÉÏÒ»µã£¬¹ýµãE×÷EF¡ÎAD£¬ÓëAC¡¢DC·Ö±ð½»ÓÚµãG£¬F£¬HΪCGµÄÖе㣬Á¬½ÓDE£¬EH£¬DH£¬FH£®ÏÂÁнáÂÛ£º
¢ÙEG=DF£»¢Ú¡ÏAEH+¡ÏADH=180¡ã£»¢Û¡÷EHF¡Õ¡÷DHC£»¢ÜÈô$\frac{AE}{AB}$=$\frac{2}{3}$£¬Ôò3S¡÷EDH=13S¡÷DHC£¬ÆäÖнáÂÛÕýÈ·µÄÓТ٢ڢۢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸