精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC,△ADE是等边三角形,B,C,D在同一直线上.

求证:(1)CE=AC+CD;(2)∠ECD=60°.

【答案】证明见解析

【解析】

(1)根据ABC、ADE都是等边三角形,得到AE=AD,BC=AC=AB,BAC=DAE=60°,推出∠BAD=CAE,得到BAD≌△CAE,根据全等三角形的性质得到BD=EC,即可推出答案;

(2)由(1)知:BAD≌△CAE,根据平角的意义即可求出∠ECD的度数.

(1)∵△ABC,ADE是等边三角形

AE=AD,BC=AC=AB,BAC=DAE=60°,

∴∠BAD=CAE,∴△BAD≌△CAE(SAS),

BD=EC.BD=BC+CD=AC+CD,

CE=BD=AC+CD.

(2)(1)BAD≌△CAE,

∴∠ACE=ABD=60°,

∴∠ECD=180°-ACB-ACE=60°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,双曲线和直线y=kx+b交于AB两点,点A的坐标为(﹣32),BCy轴于点C,且OC=6BC

1)求双曲线和直线的解析式;

2)直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CFAD于点G,交BE于点H,下面说法中正确的序号是_____

①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】O是△ABC外一点,OBOC分别平分△ABC的外角∠CBE、∠BCF,若∠A50°,则∠BOC=_______度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是矩形ABCD的对角线,过AC的中点OEF⊥AC,交BC于点E,交AD于点F,连接AECF

1)求证:四边形AECF是菱形;

2)若AB=DCF=30°,求四边形AECF的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是等边三角形ABC的角平分线,EBC延长线上的一点,且CE=CDDF=BC,垂足为FBFEF相等吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AC的坐标分别为(﹣45),(﹣13).

1)请在如图所示的网格平面内作出平面直角坐标系;

2)请作出ABC关于y轴对称的A1B1C1

3)写出点B1的坐标;

4)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列各题:

(1)先化简,再求代数式(的值,其中x=cos30°+

(2)已知α是锐角,且sin(α+15°)=.计算-4cosα-(π-3.14)0+tanα+()-1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

小明遇到一个问题:在中,三边的长分别为,求的面积.

小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为),再在网格中画出格点(即三个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法.

参考小明解决问题的方法,完成下列问题:

)图是一个的正方形网格(每个小正方形的边长为) .

①利用构图法在答卷的图中画出三边长分别为的格点

②计算①中的面积为__________.(直接写出答案)

)如图,已知,以为边向外作正方形,连接

①判断面积之间的关系,并说明理由.

②若直接写出六边形的面积为__________

查看答案和解析>>

同步练习册答案