A. | $\sqrt{x}$+1=0 | B. | $\sqrt{x}$=-x | C. | $\sqrt{{x}^{2}+3}$=0 | D. | $\frac{x}{x-1}$=$\frac{1}{x-1}$ |
分析 根据二次根式必须有意义,可以得到选项中的无理方程是否有解,从而可以解答本题.
解答 解:A、∵$\sqrt{x}$+1=0,
∴$\sqrt{x}$=-1,
∵$\sqrt{x}$≥0,
∴$\sqrt{x}$+1=0无解;
B、∵$\sqrt{x}$=-x的解为x=0,
∴$\sqrt{x}$=-x一定有实数根;
C、$\sqrt{{x}^{2}+3}$=0,
∵x2+3≥3,
∴$\sqrt{{x}^{2}+3}$≥$\sqrt{3}$,
∴$\sqrt{{x}^{2}+3}$=0无解;
D、∵$\frac{x}{x-1}$=$\frac{1}{x-1}$的解是x=1,是增根,
∴$\frac{x}{x-1}$=$\frac{1}{x-1}$无解.
故选:B.
点评 此题主要考查了解无理方程的方法及二次根式的性质,其中解无理方程最常用的方法是两边平方法及换元法,本题用了平方法.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 方程$\sqrt{x}$=4的根是x=±16 | B. | 方程$\sqrt{3x}$=-x的根是x1=0,x2=3 | ||
C. | 方程$\sqrt{x+1}$+1=0没有实数根 | D. | 方程3-$\sqrt{2x-3}$的根是x1=2,x2=6 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com