精英家教网 > 初中数学 > 题目详情

【题目】如图,在长方形 ABCD 中,放入六个形状大小相同的长方形,所标尺寸如图所示, 则图中阴影部分面积为(

A. 44cm2B. 36cm2C. 96 cm2D. 84cm2

【答案】A

【解析】

本题通过图像发现小长方形和大长方形的长和宽的联系从而列式,设长方形的长和宽为未知数,根据图示可得到关于x,y的两个方程,可求得解,从而可得到大长方形的面积,再根据阴影部分的面积=大长方形的面积-6个小长方形的面积求解即可.

设小长方形的长为x,宽为y,如图可知,

x+3y=14,①

x+y-2y=6,即x-y=6,②

-②得4y=8y=2

代入②得x=8

因此,大矩形ABCD的宽AD=6+2y=6+2×2=10

矩形ABCD面积=14×10=140(平方厘米),

阴影部分总面积=140-6×2×8=44(平方厘米)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若正比例函数y=kx(k0)的图象经过点P(2,3),则该函数的图象经过的点是( )

A.(3,2)B.(1,6)C.(2,3)D.(1,6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线经过点B,且顶点在直线x=上.

(1)求抛物线对应的函数关系式;

(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;

(3)在(2)的条件下,连接CD,与抛物线的对称轴交于点P,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作MN∥BD交x轴于点N,连接PM、PN,设OM的长为t,PMN的面积为S,求出S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,两条对角线ACBD相交于点O, AOB=60° AB=4cm.则这个矩形的周长是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⑴先化简,再求值:已知A =2a 2-aB = -5a+1,求当a = 时,3A-2B+1的值。

⑵已知x = 3是方程4x-a2-x= 2x-a)的解,求3a2-2a-1的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分MAC,交BC于点D,交BE于点F.

(1)判断直线BE与线段AD之间的关系,并说明理由;

(2)若C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC中,AB=ACDE分别在ACAB上,且BD=BCAD=DE=EB ∠A的度数等于( )

A. 36°B. 40°C. 45°D. 50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场在春节期间搞优惠促销活动,商场将29英寸和25英寸彩电共96台分别以8折和7折出售,共得168400元。已知29英寸彩电原价为3000/台,25英寸彩电原价为2000/台,出售29英寸和25英寸彩电各多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识链接:

“转化、化归思想”是数学学习中常用的一种探究新知、解决问题的基本的数学思想方法,通过“转化、化归”通常可以实现化未知为已知,化复杂为简单,从而使问题得以解决.

1)问题背景:已知:△ABC.试说明:∠A+B+C=180°.

问题解决:(填出依据)

解:(1)如图①,延长ABE,过点BBFAC.

BFAC(作图)

∴∠1=C

2=A

∵∠2+ABC+1=180°(平角的定义)

∴∠A+ABC+C=180°(等量代换)

小结反思:本题通过添加适当的辅助线,把三角形的三个角之和转化成了一个平角,利用平角的定义,说明了数学上的一个重要结论“三角形的三个内角和等于180°.

2)类比探究:请同学们参考图②,模仿(1)的解决过程试说明“三角形的三个内角和等于180°”

3)拓展探究:如图③,是一个五边形,请直接写出五边形ABCDE的五个内角之和∠A+B+C+D+E= .

查看答案和解析>>

同步练习册答案