精英家教网 > 初中数学 > 题目详情

两个数的差为3,设其中较小的一个数为x,两个数的积为y,则y与x之间的函数表达式为________.

答案:
解析:

yx23x


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知y=m2+m+4,若m为整数,在使得y为完全平方数的所有m的值中,设m的最大值为a,最小值为b,次小值为c.(注:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数.)
(1)求a、b、c的值;
(2)对a、b、c进行如下操作:任取两个求其和再除以
2
,同时求其差再除以
2
,剩下的另一个数不变,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,所得三个数的平方和等于2008证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

若m为整数,在使m2+m+4为完全平方数的所有m的值中,设其最大值为a,最小值为b,次小值为c.
(1)求a、b、c的值;
(2)对a、b、c进行如下操作:任取两个求其和再除以
2
,同时求其差再除以
2
,加上剩下的一个数,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,得到2004,2005,2006?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

探索题:
(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为
2n
2n
,用含有n的代数式表示任意一个奇数为
2n+1或2n-1
2n+1或2n-1

(2)用举例验证的方法探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是
(填“是”或“否”);
(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a-b是否“同奇”或“同偶”?并进一步得出一般性的结论.
例:①设a=2m,b=2n.
则a+b=2m+2n=2(m+n);a-b=2m-2n=2(m-n);
此时a+b和a-b同时为偶数.
请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;
(4)以(3)的结论为基础进一步探索:-a+b、-a-b、a+b、a-b是否“同奇”“同偶”?
(5)应用第(2)、(3)、(4)的结论完成:在2014个自然数1,2,3,…,2013,2014的每一个数的前面任意添加“+”或“-”,则其代数和一定是
奇数
奇数
(填“奇数”或“偶数”)

查看答案和解析>>

科目:初中数学 来源:2007年广东省深圳市东湖中学九年级数学竞赛试卷(解析版) 题型:解答题

已知y=m2+m+4,若m为整数,在使得y为完全平方数的所有m的值中,设m的最大值为a,最小值为b,次小值为c.(注:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数.)
(1)求a、b、c的值;
(2)对a、b、c进行如下操作:任取两个求其和再除以,同时求其差再除以,剩下的另一个数不变,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,所得三个数的平方和等于2008证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省淮安市淮阴中学高中招生考试数学试卷(解析版) 题型:解答题

已知y=m2+m+4,若m为整数,在使得y为完全平方数的所有m的值中,设m的最大值为a,最小值为b,次小值为c.(注:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数.)
(1)求a、b、c的值;
(2)对a、b、c进行如下操作:任取两个求其和再除以,同时求其差再除以,剩下的另一个数不变,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,所得三个数的平方和等于2008证明你的结论.

查看答案和解析>>

同步练习册答案