精英家教网 > 初中数学 > 题目详情
9.观察“探究性学习”小组的甲、乙两名同学进行的因式分解:
甲:x2-xy+4x-4y=(x2-xy)+(4x-4y)    分成两组
=x(x-y)+4(x-y)              各组提公因式
=(x-y)(x+4).
乙:a2-b2-c2+2bc=a2-(b2+c2-2bc)
=a2-(b-c)2=(a+b-c)(a-b+c).
请你在他们解法的启发下,因式分解:4x2+4x-y2+1.

分析 当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有x的二次项,x的一次项,有常数项.所以要考虑后三项4x2+4x+1为一组.

解答 解:原式=(4x2+4x+1)-y2
=(2x+1)2-y2
=(2x+1+y)(2x+1-y).

点评 本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有a的二次项,a的一次项,有常数项,所以首要考虑的就是三一分组.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.长方体的主视图与俯视图如图所示,根据图中所示标尺寸,这个长方体的表面积为52.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.据有关数据显示:2014年1月至2014年12月止高安市财政总收入约为21亿元人民币,其中“21亿”用科学记数法表示为2.1×109

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.一个立体图形的三视图如图所示,若π取3,请你根据图中给出的数据求出这个立体图形的体积为9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.二次函数y=x2-6x+3m的图象与x轴有公共点,则m的取值范值是m≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.问题提出:有同样大小正方形256个,拼成如图1所示的16×16的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过多少个小正方形?

我们先考虑以下简单的情况:一条直线穿越一个正方形的情况.(如图2)
从图2中我们可以看出,当一条直线穿过一个小正方形时,这条直线最多与正方形上、下、左、右四条边中的两个边相交,所以当一条直线穿过一个小正方形时,这条直线会与其中某两条边产生两个交点,并且以两个交点为顶点的线段会全部落在小正方形内.
这就启发我们:为了求出直线L最多穿过多少个小正方形,我们可以转而去考虑当直线L穿越由小正方形拼成的大正方形时最多会产生多少个交点.然后由交点数去确定有多少根小线段,进而通过线段的根数确定下正方形的个数.
再让我们来考虑3×3正方形的情况(如图3):为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个3×3的正方形,我们从两个方向来分析直线l穿过3×3正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的两条线段;从左右来看,这条直线最多可穿过左右平行的四条线段;这样直线L最多可穿过3×3的大正方形中的六条线段,从而直线L上会产生6个交点,这6个交点之间的5条线段,每条会落在一个不同的正方形内,因此直线L最多能经过5个小正方形.
问题解决:
(1)有同样大小的小正方形16个,拼成如图4所示的4×4的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过7个小正方形?
(2)有同样大小的小正方形100个,拼成10×10的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过19个小正方形?
(3)有同样大小的小正方形256个,拼成16×16的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过31个小正方形?
(4)请问如果用一条直线穿n×n大正方形的话,最多可以穿过2n-1个小正方形?
拓展探究:
(5)请问如果用一条直线穿2×3大长方形的话(如图5),最多可以穿过4个小正方形?
(6)请问如果用一条直线穿3×4大长方形的话(如图6),最多可以穿过6个小正方形?
(7)请问如果用一条直线穿m×n大长方形的话,最多可以穿过m+n-1个小正方形?
请将你的推理过程进行简要的叙述.
类比探究:由二维的平面我们可以联想到三维的立体空间,平面中的正方形中四条边可联想到正方体中的正方形的六个面,类比上面问题解决的方法解决如下问题.
(8)如图①有同样大小的小正方体8个,拼成如图①所示的2×2×2的一个大的正方体.请问如果用一条直线穿过这个大正方体的话,最多可以穿过多少个小正方体?

(9)请问如果用一条直线穿过n×n×n大正方体的话,最多可以穿过多少个小正方体?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知二次函数y1=-x2-2mx-m2-1(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点;
(2)当m=1时,将函数y1=-x2-2mx-m2-1的图象向上平移5个单位,得到函数y2=-x2+bx+c的图象,且y2=-x2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,如图所示.
①求点A、B、C的坐标;
②如图,矩形MPQN的顶点M、N在线段AB上(点M在点N的坐标且不与点A、B重合),顶点P、Q在抛物线上A、B之间部分的图象上,过A、C两点的直线与矩形边MP相交于点E,当矩形MPQN的周长最大时,求△AME的面积;
③当矩形MPQN的周长最大时,在坐标轴上是否存在点D,使得△ACD的面积与②中△AME的面积相等?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知在∠MON中,A,B分别为ON,OM上一点.
(1)如图,若CD⊥OB于D,OC平分∠MON,OA+OB=2OD,求证:∠MON+∠ACB=180°;
(2)若CD⊥OB于D,OC平分∠MON,∠MON+∠ACB=180°,求证:OA+OB=2OD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.绝对值为1的数有±1,-5$\frac{1}{5}$的倒数是-$\frac{5}{26}$.

查看答案和解析>>

同步练习册答案