精英家教网 > 初中数学 > 题目详情
如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,有下面4个结论:
①BD是∠ABC的角平分线;
②△BCD是等腰三角形;
③△ABC∽△BCD;
④△AMD≌△BCD.
(1)判断其中正确的结论是哪几个?
(2)从你认为是正确的结论中选一个加以证明.

【答案】分析:(1)利用等腰三角形和线段垂直平分线的性质分析.
(2)先①根据等腰三角形的性质证明∠ABC=∠ACB,再根据中垂线的性质证明.
解答:解:(1)连接BD,
①∵AB=AC,∠A=36°
∴△ABC是等腰三角形,∠ABC=∠ACB==72°,
∵AB垂直平分线交AC于D,交AB于M,
∴根据中垂线的性质,中垂线上的点到线段的两个端点的距离相等.
有AD=BD,∴∠A=∠ABD=36°,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°,
∴BD平分∠ABC,故正确;

②∴∠BDC=180°-∠C-∠DBC=180°-72°-36°=72°,
∴BD=BC,
∴△BCD是等腰三角形.故正确;

③∠ABC=∠ACB=∠BDC=∠C,
∴△ABC∽△BCD,故正确;

④∵∠AMD=90°≠∠C=72°,
∴△AMD与△BCD不是全等三角形.故不正确.
∴①、②、③命题都正确.正确的结论是①、②、③;

(2)证明:BD平分∠ABC,
∵AB=AC,∠A=36°
∴△ABC是等腰三角形,∠ABC=∠ACB==72°,
∵AB垂直平分线交AC于D,交AB于M,
∴根据中垂线的性质,中垂线上的点到线段的两个端点的距离相等.有AD=BD,
∴∠A=∠ABD=36°,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°,
∴BD平分∠ABC.
点评:本题利用了等腰三角形的性质和判定:等边对等角,等角对等边.线段的中垂线的性质,三角形内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,则∠BFD的度数是(  )
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知AB=AC,AD=AE.求证BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,已知AB=AC,AD=AE,BD=EC,则图中有
2
对全等三角形,它们是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步练习册答案