精英家教网 > 初中数学 > 题目详情

【题目】已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.

(1)求反比例函数和一次函数的解析式;

(2)根据图象直接写出使得y1>y2时,x的取值范围.

【答案】(1)y1=x+2,y2= ;(2)由图象可知y1>y2时,x>1或﹣3<x<0.

【解析】试题分析:(1)根据待定系数法即可解决问题.

2)观察图象y1y2时,y1的图象在y2的上面,由此即可写出x的取值范围.

试题解析:(1)把点A13)代入y2=,得到m=3

∵B点的横坐标为﹣3

B坐标(﹣3﹣1),

A13),B﹣3﹣1)代入y1=kx+b得到解得

y1=x+2y2=

2)由图象可知y1y2时,x1﹣3x0

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,四边形中,,且

试求:(1的度数;(2)四边形的面积(结果保留根号);

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在8×8的方格中建立平面直角坐标系,有点A(﹣2,2)、B(﹣3,1)、C(﹣1,0),P(a,b)是ABC的AC边上点,将ABC平移后得到△A1B1C1,点P的对应点为P1(a+4,b+2).

(1)画出平移后的△A1B1C1,写出点A1、C1的坐标;

(2)若以A、B、C、D为顶点的四边形为平行四边形,写出方格中D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BEt(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.

信息读取

(1)梯形上底的长AB=   

(2)直角梯形ABCD的面积=   

图象理解

(3)写出图中射线NQ表示的实际意义;

(4)当2<t<4时,求S关于t的函数关系式;

问题解决

(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长均为1的小正方形网格纸中,OAB的顶点OAB均在格点上,且O是直角坐标系的原点,点A轴上.

1)以O为位似中心,将OAB放大,使得放大后的OA1B1OAB对应线段的比为21,画出OA1B1

(所画OA1B1OAB在原点两侧)

2)直接写出点A1B1的坐标______________________.

3)直接写出____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市正在开展食品安全城市创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:

(1)此次共调查了   名学生;

(2)扇形统计图中D所在扇形的圆心角为   

(3)将上面的条形统计图补充完整;

(4)若该校共有800名学生,请你估计对食品安全知识非常了解的学生的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y= x+6分别与x轴、y轴交于AB两点:直线y= xAB于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的进度沿x轴向左运动.过点Ex轴的垂线,分別交直线ABODPQ两点,以PQ为边向右作正方形PQMN.设正方形PQMN△ACD重叠的图形的周长为L个单位长度,点E的运动时间为t().

1)直接写出点C和点A的坐标.

2)若四边形OBQP为平行四边形,求t的值.

30<t5时,求Lt之间的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD,AD=3CD=4,E在边CD,DE=1.

1感知如图①连接AE过点EBC于点F连接AF易证 (不需要证明)

2)探究如图②P在矩形ABCD的边AD(P不与点AD重合)连接PE过点E ,BC于点F连接PF.求证 相似;

3)应用如图③EFAB边于点F 其他条件不变的面积是6AP的长为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+b与双曲线yk为常数,k0)在第一象限内交于点A12),且与x轴、y轴分别交于BC两点.

1)求直线和双曲线的解析式;

2)点Px轴上,且△BCP的面积等于2,求P点的坐标.

查看答案和解析>>

同步练习册答案