精英家教网 > 初中数学 > 题目详情
方程x2+2x-1=0的解可视为函数y=x+2的图象与函数y=
1
x
的图象交点的横坐标,那么方程kx2+x-4=0(k≠0)的两个解其实就是直线
 
与双曲线
 
的图象交点的横坐标,若这两个交点所对应的点(x1
4
x1
)
(x2
4
x2
)
均在直线y=x的同侧,则实数k的取值范围是
 
分析:由已知方程x2+2x-1=0的解可视为函数y=x+2的图象与函数y=
1
x
的图象,可以仿照已知分解方程kx2+x-4=0,得出答案,再表示出两图象的交点坐标,再进一步得出k的取值范围.
解答:解:方程kx2+x-4=0的实根x1,x2
也可视为函数y=kx+1的图象与函数y=
4
x
的图象交点的横坐标.
因为函数y=
4
x
的图象与直线y=x的交点为A(2,2),B(-2,-2).
当函数y=kx+1的图象过点A(2,2)时,k=
1
2

当函数y=kx+1的图象过点B(-2,-2)时,k=
3
2

当k>0时,
又因为点(x1
4
x1
)
(x2
4
x2
)
均在直线y=x的同侧,
所以实数k的取值范围是:
1
2
<k<
3
2

当k<0时,△>0解得:0>k>-
1
16

故答案为:y=kx+1,y=
4
x
1
2
<k<
3
2
或0>k>-
1
16
点评:此题主要考查了一次函数与反比例函数的综合应用,由已知正确的将方程kx2+x-4=0分成两函数是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、已知方程x2+2x-3k=0的两个根分别是x1和x2,且满足(x1+1)(x2+1)=-4,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知关于x的一元二次方程x2-2x-m+1=0.
(1)若x=3是此方程的一个根,求m的值和它的另一个根;
(2)若方程x2-2x-m+1=0有两个不相等的实数根,试判断另一个关于x的一元二次方程x2-(m-2)x+1-2m=0的根的情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、用配方法解方程x2+2x-3=0,下列配方结果正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知α、β是方程x2+2x-5=0的两根,那么
1
α
+
1
β
的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算2
2
-
2

(2)解方程x2-2x=0

查看答案和解析>>

同步练习册答案