精英家教网 > 初中数学 > 题目详情
18.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:

根据图中信息,该足球队全年比赛胜了27场.

分析 根据统计图中的数据可以求得比赛总场数,从而可以求得足球队全年比赛胜的场数.

解答 解:由统计图可得,
比赛场数为:10÷20%=50,
胜的场数为:50×(1-26%-20%)=50×54%=27,
故答案为:27.

点评 本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,DE=DF.在下列条件中,使四边形BECF是菱形的是(  )
A.EB⊥ECB.AB⊥ACC.AB=ACD.BF∥CE

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为$\sqrt{14}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.分解因式:(1)9ax2-ay2
                  (2)2x3y+4x2y2+2xy3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.关于x的一元一次不等式$\frac{m-2x}{3}$≤-2的解集为x≥4,则m的值为(  )
A.14B.7C.-2D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在?ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=$\frac{4}{5}$,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)实验与探究
①在下列三个图中,给出菱形ABCD的顶点A,B,D的坐标(如图所示),写出图(1),(2),(3)中点C的坐标,它们分别是(8,4)、(e+c,d)、(c+e-a,d);

②菱形绕原点逆时针依照(90°,2)旋转后点C对应的点C1的坐标分别是(-4,16)、(-2d,2e+2c)、(-2d,2c+2e-2a).(其中(90°,2)表示旋转90°,长度扩大2倍)
(2)归纳与发现
①在图4中,给出菱形ABCD的顶点A,B,D的坐标,求出顶点C的坐标;(点C的坐标用含a,b,c,d,e,f的代数式表示)

②菱形绕原点逆时针依照(90°,2)旋转后对应的C1的坐标为多少.
(3)运用与推广
①通过对图(1),(2),(3),(4)的观察和顶点C的坐标的探究,你会发现:无论菱形ABCD处于直角坐标系的哪个位置,当顶点坐标为:A(a,b),B(c,d),C(m,n),D(e,f)时,四个顶点的横坐标a,c,m,e之间的等量关系为m=c+e-a;纵坐标b,d,n,f之间的等量关系为n=d+f-b.(不必证明);
②通过顶点C的坐标和旋转后的C1的坐标探究,你会发现无论C点在哪个位置,绕原点逆时针依照(90°,n)旋转,设C(x1,y1),C1(x2,y2),则x1,x2,y1,y2满足的等式是x2=-ny1,y2=nx1(不必证明).
(备注:有两点A(x1,y1),B(x2,y2),则它们的中点P的坐标为($\frac{{{x_1}+{x_2}}}{2}$,$\frac{{{y_1}+{y_2}}}{2}$))

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.分解因式
(1)2x2-2
(2)(a2+4)2-16a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.数学小组的两位同学准备测量两幢教学楼之间的距离,如图,两幢教学楼AB和CD之间有一景观池(AB⊥BD,CD⊥BD),一同学在A点测得池中喷泉处E点的俯角为42°,另一同学在C点测得E点的俯角为45°(点B,E,D在同一直线上),两个同学已经在学校资料室查出楼高AB=15m,CD=20m,求两幢教学楼之间的距离BD.
(结果精确到0.1m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

同步练习册答案