精英家教网 > 初中数学 > 题目详情
精英家教网如图(1),在直角梯形OABC中,BC∥OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=
35

(1)写出顶点A、B、C的坐标;
(2)如图(2),点P为AB边上的动点(P与A、B不重合),PM⊥OA,PN⊥OC,垂足分别为M,N.设PM=x,四边形OMPN的面积为y.
①求出y与x之间的函数关系式,并写出自变量x的取值范围;
②是否存在一点P,使得四边形OMPN的面积恰好等于梯形OABC的面积的一半?如果存在,求出点P的坐标;如果不存在,说明理由.
分析:(1)点A的坐标,由图可直接得出;求出BC、OC的长,即可得到点B、C的坐标;
(2)①PM=x,由图得,0<x<4,由cos∠OAB=
3
5
,得到MA=
3
4
x,由矩形的面积,可求出y与x之间的函数关系式;
②根据S矩形OMPN=
1
2
S梯形OABC可得到一点;
解答:精英家教网解:(1)由图得,A(6,0),B(3,4),C(0,4),
做BD⊥OA,所以,BD=OC,BC=OD;
由OA=6,AB=5,cos∠OAB=
3
5
得,
AD=3,BD=4,
即,BC=3,OC=4;
故坐标为:A(6,0),B(3,4),C(0,4);

(2)①∵设PM=x,由图得,0<x<4,
则,AM=
3
4
x,
所以,y=(6-
3
4
x)x,
整理得,y=-
3
4
x2
+6x;
故y与x之间的函数关系式是:y=-
3
4
x2
+6x(0<x<4);
②由-
3
4
x2
+6x=
1
2
×[(3+6)×4÷2]整理得,
x2-8x+12=0,
解得,x1=2,x2=6(舍去),
OM=6-2×
3
4
=
9
2

故点P的坐标为(
9
2
,2).
点评:本题考查了直角三角形的性质、直角梯形和矩形的相关知识以及动点函数问题,根据题目中的等量关系列出二次函数,注意最后取值必须使题目有意义;此题是一个大综合题,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•毕节地区)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.
(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是
平行四边
平行四边
形;
(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为
90
90
度;连接CC′,四边形CDBC′是
直角梯
直角梯
形;
(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.
(1)求点E的坐标;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xoy中,直角梯形OABC,BC∥AO,A(-2,0),B(-1,1精英家教网),将直角梯.形OABC绕点O顺时针旋转90°后,点A、B、C分别落在点A′、B′、C′处.请你解答下列问题:
(1)在如图直角坐标系xOy中画出旋转后的梯形O′A′B′C′;
(2)求点A旋转到A′所经过的弧形路线长.

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期相交线与平行线专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期平移专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

同步练习册答案