(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.
(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;
(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.
(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)
[解] (1) 由AE=40,BC=30,AB=50,ÞCP=24,又sinÐEMP=ÞCM=26。
(2) 在Rt△AEP與Rt△ABC中,∵ ÐEAP=ÐBAC,∴ Rt△AEP ~ Rt△ABC,
∴ ,即,∴ EP=x,
又sinÐEMP=ÞtgÐEMP==Þ=,∴ MP=x=PN,
BN=AB-AP-PN=50-x-x=50-x (0<x<32)。
(3) j 當E在線段AC上時,由(2)知,,即,ÞEM=x=EN,
又AM=AP-MP=x-x=x,
由題設△AME ~ △ENB,∴ ,Þ=,解得x=22=AP。
k 當E在線段BC上時,由題設△AME ~ △ENB,∴ ÐAEM=ÐEBN。
由外角定理,ÐAEC=ÐEAB+ÐEBN=ÐEAB+ÐAEM=ÐEMP,
∴ Rt△ACE ~ Rt△EPM,Þ,即,ÞCE=…j。
設AP=z,∴PB=50-z,
由Rt△BEP ~ Rt△BAC,Þ,即=,ÞBE=(50-z),∴CE=BC-BE=30-(50-z)…k。
由j,k,解=30-(50-z),得z=42=AP。
【解析】略
科目:初中数学 来源: 题型:
(本题满分14分,第(1)小题4分,第(2)小题①6分、第(2)小题②4分)
直角三角板ABC中,∠A=30°,BC=1.将其绕直角顶点C逆时针旋转一个角(且≠ 90°),得到Rt△,
(1)如图9,当边经过点B时,求旋转角的度数;
(2)在三角板旋转的过程中,边与AB所在直线交于点D,过点 D作DE∥交边于点E,联结BE.
①当时,设,,求与之间的函数解析式及定义域;
②当时,求的长.
查看答案和解析>>
科目:初中数学 来源:2011届上海市普陀区4月中考模拟数学试卷 题型:解答题
(本题满分14分,第(1)小题4分,第(2)小题①6分、第(2)小题②4分)
直角三角板ABC中,∠A=30°,BC=1.将其绕直角顶点C逆时针旋转一个角(且≠ 90°),得到Rt△,
(1)如图9,当边经过点B时,求旋转角的度数;
(2)在三角板旋转的过程中,边与AB所在直线交于点D,过点 D作DE∥交边于点E,联结BE.
①当时,设,,求与之间的函数解析式及定义域;
②当时,求的长.
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(天津卷)数学 题型:解答题
(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.
(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;
(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.
查看答案和解析>>
科目:初中数学 来源:2010-2011学年上海市考模拟数学试卷 题型:解答题
(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题满分4分)
已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,联结MF交线段AD于点P,联结NP,设正方形BEFG的边长为x,正方形DMNK的边长为y,
(1)求y关于x的函数关系式及自变量x的取值范围;
(2)当△NPF的面积为32时,求x的值;
(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切,若能请求x的值,若不能,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com