精英家教网 > 初中数学 > 题目详情
如图,直线y=
3
4
x+3
与x轴、y轴分别交于A、B两点,已知点C(0,-1)、D(0,k),且0<k<3,以点D为圆心、DC为半径作⊙D,当⊙D与直线AB相切时,k的值为(  )
A.
5
9
B.
2
3
C.
7
9
D.
8
9

如图所示:
y=
3
4
x+3
中,令x=0,得y=3;令y=0,
得x=-4,
故A,B两点的坐标分别为A(-4,0),B(0,3).
若动圆的圆心在E处时与直线l相切,设切点为E,
如图所示,连接ED,则ED⊥AB.
可知
AD2-DE2=AE2
AE=AB-BE
BE2=BD2-DE2

代入数据得
k=
7
9

故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:∠MAN=60°,点B在射线AM上,AB=4(如图).P为直线AN上一动点,以BP为边作等边三角形BPQ(点B,P,Q按顺时针排列),O是△BPQ的外心.
(1)当点P在射线AN上运动时,求证:点O在∠MAN的平分线上;
(2)当点P在射线AN上运动(点P与点A不重合)时,AO与BP交于点C,设AP=x,AC•AO=y,求y关于x的函数解析式,并写出函数的定义域;
(3)若点D在射线AN上,AD=2,圆I为△ABD的内切圆.当△BPQ的边BP或BQ与圆I相切时,请直接写出点A与点O的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分线BD交AC于点D,点E是线段AB上的一点,以BE为直径的圆O过点D.
(1)求证:AC是圆O的切线;
(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P是⊙O外一点,PA切⊙O于点A,∠O=60°,则∠P度数为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,直线PA交⊙O于A、B两点,AE是⊙O的直径,点C是⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为点D.
(1)求证:CD与⊙O相切;
(2)若tan∠ACD=
1
2
,⊙O的直径为10,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙P与x轴相切于坐标原点O,点A(0,2)是⊙P与y轴的交点,点B(-2
2
,0)在x轴上.连接BP交⊙P于点C,连接AC并延长交x轴于点D.
(1)求线段BC的长;
(2)求直线AC的关系式;
(3)当点B在x轴上移动时,是否存在点B,使△BOP相似于△AOD?若存在,求出符合条件的点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两个半圆中,长为4的弦,AB与直径CD平行且与小半圆相切,那么图中阴影部分的面积等于多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,ADBC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.
(1)求⊙O的直径;
(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD为等腰梯形时,四边形PQCD的面积;
(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案