【题目】A,B,C三地在同一条公路上,A地在B,C两地之间,甲、乙两车同时从A地出发匀速行驶,甲车驶向C地,乙车先驶向B地,到达B地后,调头按原速经过A地驶向C地(调头时间忽略不计),到达C地停止行驶,甲车比乙车晚0.4小时到达C地,两车距B地的路程y(km)与行驶时间x(h)之间的函数关系如图所示,请结合图象信息,解答下列问题:
(1)甲车行驶的速度是 km/h,并在图中括号内填入正确的数值;
(2)求图象中线段FM所表示的y与x的函数解析式(不需要写出自变量x的取值范围);
(3)在乙车到达C地之前,甲、乙两车出发后几小时与A地路程相等?直接写出答案.
【答案】(1)50;5.(2)y=90x﹣90(1≤x≤5);(3)小时或小时.
【解析】
(1)观察图象找出A、C两地间的距离,再根据速度=路程÷时间,即可求出甲车行驶的速度;由甲车比乙车晚0.4小时到达C地结合甲车5.4小时到达C地,可得出乙车到达C地所用时间;
(2)根据速度=路程÷时间可求出乙车的速度,由时间=路程÷速度可得出点F的横坐标,再根据路程=速度×(时间﹣1),即可得出线段FM所表示的y与x的函数解析式;
(3)根据路程=速度×时间(路程=90﹣速度×时间),可得出线段DM(DF)所表示的y与x的函数解析式,分0<x≤1以及1<x<5两种情况,找出关于x的一元一次方程,解之即可得出结论.
解:(1)A、C两地间的距离为360﹣90=270(km),
甲车行驶的速度为270÷5.4=50(km/h),
乙车达到C地所用时间为5.4﹣0.4=5(h).
故答案为:50;5.
(2)乙的速度为(90+360)÷5=90(km/h),
点F的横坐标为90÷90=1.
∴线段FM所表示的y与x的函数解析式为y=90(x﹣1)=90x﹣90(1≤x≤5).
(3)线段DE所表示的y与x的函数解析式为y=50x+90(0≤x≤5.4),
线段DF所表示的y与x的函数解析式为y=90﹣90x(0≤x≤1).
当0<x≤1时,有90﹣(90﹣90x)=50x+90﹣90,
解得:x=0(舍去);
当1<x<5时,有|90x﹣90﹣90|=50x+90﹣90,
解得:
答:在乙车到达C地之前,甲、乙两车出发后小时或小时与A地路程相等.
科目:初中数学 来源: 题型:
【题目】如图,在边长为6的正方形ABCD中,点F为CD上一点,E是AD的中点,且DF=2.在BC上找点G,使EG=AF,则BG的长是___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数y=ax2+bx来表示,已知OA=8米,距离O点2米处的棚高BC为米.
(1)求该抛物线的解析式;
(2)若借助横梁DE(DE∥OA)建一个门,要求门的高度为1.5米,求横梁DE的长度是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数 y=x2+bx+c 过点 A(1,0),C(0,﹣3)
(1)求此二次函数的解析式;
(2)求△ABC 的面积;
(3)在抛物线上存在一点 P 使△ABP 的面积为 10,请求出点 P 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为Rt△ABC的直角边AC上一点,以OC为半径的圆与斜边AB相切于点D,P是弧CD上任意一点,过点P作⊙O的切线,交BC于点M,交AB于点N,已知AB=5,AC=4.
(1)△BMN的周长等于多少;
(2)⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣6 | 0 | 4 | 6 | 6 | … |
下列说法:①抛物线与y轴的交点为(0,6); ②抛物线的对称轴在y轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y随x增大而减小.⑤不等式ax2+(b﹣3)x+c﹣6>0解集为﹣2<x<0.其中说法正确的有( )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1)如图甲,将△ADE绕点A 旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是_____.
①BD=CE②BD⊥CE③∠ACE+∠DBC=45°④BE2=2(AD2+AB2)
(2)若AB=4,AD=2,把△ADE绕点A旋转,
①当∠EAC=90°时,求PB的长;
②求旋转过程中线段PB长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0;⑦方程ax2+bx+c=﹣4有实数解,正确的有( )
A. 3个 B. 4个 C. 5个 D. 6个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com