精英家教网 > 初中数学 > 题目详情

【题目】如图,DE为△ABCAB上两点,FH分别在ACBC上,∠1+2180°

1)求证:EFDH

2)若∠ACB90°,∠DHB25°,求∠EFC的度数.

【答案】1)见解析;(2)∠EFC115°

【解析】

1)由∠1+2180°,∠ADH+2180°,得出∠1=∠ADH,即可得出结论;

2)过点CCGDH,交ABG,则∠GCB=∠DHB25°,推出∠ACG=∠ACB﹣∠GCB65°,由EFDH,得出CGEF,得出∠EFC+ACG180°,即可得出结果.

1)证明:∵∠1+2180°,∠ADH+2180°

∴∠1=∠ADH

EFDH

2)解:过点CCGDH,交ABG,如图所示:

则∠GCB=∠DHB25°

∴∠ACG=∠ACB﹣∠GCB90°25°65°

由(1)得:EFDH

CGEF

∴∠EFC+ACG180°

∴∠EFC180°﹣∠ACG180°65°115°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).

(1)将ABC以点C为旋转中心旋转180°,画出旋转后对应的A1B1C;

(2)平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2

(3)若将A1B1C绕某一点旋转可以得到A2B2C2,请直接写出旋转中心的坐标 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线EFMN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与点O重合,直角边OAMN重合,OB∠NOE内部.操作:将三角尺绕点O以每秒的速度沿顺时针方向旋转一周,设运动时间为t(s).

(1)t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;

(2)若在三角尺转动的同时,直线EF也绕点O以每秒的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.

t为何值时,OE平分∠AOB?

②OE能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从直径为2cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空,将理由补充完整.

如图,CFABFDEABE,∠1+EDC180°,求证:FGBC

证明:∵CFABDEAB(已知)

∴∠BED=∠BFC90°(垂直的定义)

EDFC    

∴∠2=∠3    

∵∠1+EDC180°(已知)

又∵∠2+EDC180°(平角的定义)

∴∠1=∠2    

∴∠1=∠3(等量代换)

FGBC    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EABCD的边CD的中点,延长AEBC的延长线于点F.

(1)求证:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:

时间(分钟)

里程数(公里)

车费(元)

小明

8

8

12

小刚

12

10

16

(1)求x,y的值;

(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图,矩形ABCD中,OAC中点,过点O的直线分别与ABCD交于点EF,连结BFAC于点M,连结DEBO.若∠COB=60°FO=FC,则下列结论:①FB垂直平分OC②△EOB≌△CMB③DE=EF④SAOESBCM=23.其中正确结论的个数是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由一个角为60°且边长为1的菱形组成的网格,每个菱形的顶点称为格点,点A,B,C都在格点上,则tan∠BAC=_____

查看答案和解析>>

同步练习册答案