【题目】如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1)试判断BE与FH的数量关系,并说明理由;
(2)求证:∠ACF=90°;
(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求 的长.
【答案】
(1)解:BE=FH.
证明:∵∠AEF=90°,∠ABC=90°,
∴∠HEF+∠AEB=90°,∠BAE+∠AEB=90°,
∴∠HEF=∠BAE,
在△ABE和△EHF中,
,
∴△ABE≌△EHF(AAS)
∴BE=FH
(2)解:由(1)得BE=FH,AB=EH,
∵BC=AB,
∴BE=CH,
∴CH=FH,
∴∠HCF=45°,
∵四边形ABCD是正方形,
∴∠ACB=45°,
∴∠ACF=180°﹣∠HCF﹣∠ACB=90°
(3)解:由(2)知∠HCF=45°,∴CF= FH.
∠CME=∠HCF﹣∠CEF=45°﹣15°=30°.
如图2,过点C作CP⊥EF于P,则CP= CF= FH.
∵∠CEP=∠FEH,∠CPE=∠FHE=90°,
∴△CPE∽△FHE.
∴ ,即 ,
∴EF=4 .
∵△AEF为等腰直角三角形,∴AF=8.
取AF中点O,连接OE,则OE=OA=4,∠AOE=90°,
∴ 的弧长为: =2π.
【解析】(1)利用ABE≌△EHF求证BE=FH,(2)由BE=FH,AB=EH,推出CH=FH,得到∠HCF=45°,由四边形ABCD是正方形,所以∠ACB=45°,得出∠ACF=90°,(3)作CP⊥EF于P,利用相似三角形△CPE∽△FHE,求出EF,利用公式求出 的长.
科目:初中数学 来源: 题型:
【题目】端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.5元,花35元购买粽子的个数与花20元购买咸鸭蛋的个数相同.粽子与咸鸭蛋的价格各是多少?
【答案】粽子和咸鸭蛋的单价分别为每个3.5元、2元
【解析】试题分析:设咸鸭蛋的价格为x元,则粽子的价格为(1.5+x)元,根据花35元购买粽子的个数与花20元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.
试题解析:
解:设咸鸭蛋的价格为x元,则粽子的价格为(1.5+x)元,
根据题意得:
,
去分母得:35x=30+20x,
解得:x=2,
经检验x=2是分式方程的解,且符合题意,
1.5+x=1.5+2=3.5(元),
故咸鸭蛋的价格为2元,粽子的价格为3.5元.
点睛:此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
【题型】解答题
【结束】
24
【题目】某书店为了迎接“读书节”制定了活动计划,陈经理查看计划书发现:A类图书的标价是B类图书标价的1.5倍,若顾客用1080元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少20本.请求出A、B两类图书的标价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=3,AB=4,求菱形ADCF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠1和∠2互补,∠C=∠EDF.
(1)判断DF与EC的关系为 .
(2)试判断DE与BC的关系,并说明理由.
(3)试判断∠DEC与∠DFC的关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.
(1)当AN平分∠MAB时,求DM的长;
(2)连接BN,当DM=1时,求△ABN的面积;
(3)当射线BN交线段CD于点F时,求DF的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于原点对称的△A2B2C2;
(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com