精英家教网 > 初中数学 > 题目详情
已知关于x的方程(a2+1)x2-2(a+b)x+b2+1=0
(1)若b=2,且2是此方程的根,求a的值;
(2)若此方程有实数根,当-3<a<-1时,求b的取值范围.
分析:(1)先把b=2,x=2代入方程得4(a2+1)-4(a+2)+4+1=0,然后解关于a的一元二次方程即可;
(2)根据根的判别式的意义得到△=4(a+b)2-4(a2+1)(b2+1)≥0,整理得(ab-1)2≤0,利用非负数的性质得到ab-1=0,则a=
1
b

由于-3<a<-1,于是得到-1<b<-
1
3
解答:解:(1)把b=2,x=2代入方程得4(a2+1)-4(a+2)+4+1=0,解得a1=a2=
1
2

即a的值为
1
2

(2)根据题意得△=4(a+b)2-4(a2+1)(b2+1)≥0,
∴(ab)2-2ab+1≤0,即(ab-1)2≤0,
∴ab-1=0,
∴a=
1
b

∵-3<a<-1
∴-1<b<-
1
3
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并直接写出以这两根为直角边的直角三角形外接圆半径的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程m(x-1)=4x-m的解是-4,求m2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程4x-3m=2的解是x=m,则m=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程|x|=ax-a有正根且没有负根,则a的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程3x2-4x•sinα+2(1-cosα)=0有两个不相等的实数根,α为锐角,那么α的取值范围是
 

查看答案和解析>>

同步练习册答案