【题目】2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜( )
A.10场B.11场C.12场D.13场
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,把R△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上 .
(1)若∠BDA=70°,求∠BAC的度数;
(2)若BC=8,AC=6,求△ABD中AD边上的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且.
求证: ∽;
求证: ;
若M、N分别是BE、CD的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 RtABC和 RtBED 的边长,已知,这时我们把关于 x 的形如二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于 x 的“勾系一元二次方程”,必有实数根;
(3)若 x 1是“勾系一元二次方程” 的一个根,且四边形 ACDE 的周长是6,求ABC 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则,所以.
把代入已知方程,得.
化简,得: .
这种利用方程根的代替求新方程的方法,我们成为“换根法”,请用阅读材料提供的“换根法”求新方程要求:把所求方程化成一般形式;
(1)已知方程,求一个一元二次方程,使它的根分别是已知方程根的相反数.
(2)已知关于x的一元二次方程有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.
(1)求购进甲、乙两种花卉,每盆各需多少元?
(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;
(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线的解析表达式为,且与x轴交于点D,直线经过点A,点B,直线,交于点C.
(1)求直线的解析表达式;
(2)求的面积;
(3)在直线上存在异于点C的另一点P,使得的面积等于面积,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:)如下:
,,,,,,
问:(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为(升/千米),这天上午小李接送乘客,出租车共耗油多少升?
(3)若出租车起步价为8元,起步里程为(包括),超过部分每千米1.2元,问小李这天上午共得车费多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com