精英家教网 > 初中数学 > 题目详情
16、已知:如图,AD•AB=AE•AC,那么△ADC∽△AEB相似吗?请说明理由.
分析:根据两边对应成比例且夹角相等的两个三角形相似可证明△ADC∽△AEB.
解答:解:∵AD•AB=AE•AC,
∴AD:AE=AC:AB.
又∵∠A是公共角,
∴△ADC∽△AEB(两边对应成比例且夹角相等的两个三角形相似).
点评:考查相似三角形的判定定理:
(1)两角对应相等的两个三角形相似;
(2)两边对应成比例且夹角相等的两个三角形相似;
(3)三边对应成比例的两个三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知:如图,AD∥BC,ED∥BF,且AF=CE.
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AD=BC,AC=BD.试判断OD、OC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意填空:
已知,如图,AD∥BC,∠BAD=∠BCD,求证:AB∥CD.
证明:∵AD∥BC(已知)
∴∠1=
∠2(两直线平行,内错角相等),
∠2(两直线平行,内错角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性质)
(等式的性质)

即:∠3=∠4
AB∥CD(内错角相等,两直线平行)
AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

同步练习册答案